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Abstract
The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to
conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in
mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and
tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study
was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the
presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field
samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the
conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices
and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study
region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover
crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal
precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The
methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural
management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution
that could help used to monitor various climate-smart agricultural practices.
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Introduction

The Euro-American colonization of the U.S. Midwest in the
19th century transformed 100 million hectares of prairies
into predominantly annual row-crop farming systems (Yu
et al. 2020). This shift led to extensive soil carbon losses,
which have increased atmospheric greenhouse gas con-
centrations and reduced soil fertility (Bernacchi et al. 2005;
Lal 2019). In response, climate-smart agriculture has been
promoted by both government and industry to ensure sus-
tainable food production and combat these losses (Bai et al.
2019). Recognizing the potential for sequestering more
carbon in the soil, combined with incentive programs, more
farmers have started adopting practices such as conservation
tillage and cover cropping to reduce soil disturbance and
increase soil carbon inputs (Guto et al. 2012; Deines et al.
2019; Zheng et al. 2013).
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Conservation tillage practices, including minimum and
no-tillage, are effective in minimizing soil disturbance,
preserving soil fertility, and maintaining a crop residue
cover of greater than 15% (Claassen et al. 2018; Karlen
et al. 1994; Smith et al. 2010; Sprunger et al. 2021). Often
minimum tillage schema leaves a crop residue cover
between 15 and 30%, while no-tillage can leave crop resi-
due of more than 30% (Gustafson et al. 2019). In contrast,
conventional agricultural techniques, such as plowing or
conventional tillage, typically leave less than 15% of the
crop residue on the soil surface (Claassen et al. 2018).
These conventional practices increase soil disturbance and
accelerate the loss of soil organic matter by elevating oxy-
gen levels within the soil profile. This process increases the
microbial conversion of organic carbon, resulting in low
soil aggregate stability (Cooper et al. 2021). As of 2023, the
adoption rate of no-till farming in the U.S. Midwest remains
relatively low, at approximately 40% (Kwang et al. 2023).
Previous studies have shown that under current conven-
tional tilling practices, the U.S. Midwest faces an estimated
loss of about 9.7 billion tons of soil over the next century,
potentially leading to substantial economic losses (Kwang
et al. 2023; Thaler et al. 2022).

In addition to conservation tillage, other practices like
cover cropping can significantly improve soil health by
increasing the quantity of roots and root exudates in the soil.
Cover crops, planted between two primary crops, are
essential for maintaining productivity and ensuring ade-
quate soil coverage during the fallow period (Wittwer and
van der Heijden 2020). Lichtenberg (2004) observed that
economic variables, such as enhanced profitability resulting
from higher crop production and additional cash generated
from haying and grazing, significantly impact the adoption
of conservation practices. Despite their benefits, cover crops
adoption remains relatively low at 7.2% in U.S. Midwest
(Zhou et al. 2022). The limited expansion of cover cropping

and conservation tillage can be attributed to challenges such
as the need for specialized planting equipment, increased
farm management activities, and labor constraints.

Additionally, the U.S. Midwest experiences hot and
humid summers along with cold and snowy winters, which
limit plant growth and contribute to winter kill of plants
(Janowiak et al. 2016) (Fig. 1). Furthermore, the adoption of
no-tillage and cover cropping, along with their associated
benefits varies based on soil characteristics, crop rotation,
and climatic regimes. Previous studies showed that cover
crop adoption is more prevalent in regions with low soil
organic matter and high erodibility (Bowman and Wallan-
der, 2021). While cover crops can facilitate successful
planting by absorbing excessive soil moisture in mesic
regions, they may reduce the amount of water available to
the cash crop in arid and semiarid areas (Reese et al. 2014;
Wang et al. 2021). Cover-crop benefits may also be limited
by the shorter growing season, harsh winters affecting plant
survival, and variable fall and spring weather in northern
climates (Reese et al. 2014).

Previous research also indicates that conservation tillage
which leaves high residue cover can potentially impede the
timely germination of plants and cause a decline in crop
yield (Blanco-Canqui and Lal 2009; Nouri et al.
2021, 2019). Conversely, in drier regions of the U.S.
Midwest, the presence of crop residue has been to shown to
help increase crop water availability and yield (Blanco-
Canqui and Lal 2009). This spatial variability in the benefits
of conservation cover crop and tillage use necessitates
developing models over large spatial scales using remote
sensing, especially in areas with short growing seasons and
water stress (Farmaha et al. 2022; Reese et al. 2014).

Remote sensing advancements in analytical capabilities
(e.g., cloud computing, machine learning, data fusion)
provide an opportunity to monitor cropping systems at a
large spatial scale and over extended periods using

Fig. 1 Mean monthly precipitation (mm) and temperature (°C) changes in eastern South Dakota from 2011 to 2021, with the general timing of
cover crop and tillage establishment practices
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multispectral and synthetic aperture radar (SAR) imagery
(Deines et al. 2019). Recent studies have used both airborne
(Wang et al. 2023; Yuan et al. 2019) and spaceborne
(Azzari et al. 2019; Seifert et al. 2018) sensors to quantify
cover crop growth and tillage intensity.

We used these advancements in satellite data sensors and
modeling systems for a field-scale assessment of con-
servation agriculture aimed at supporting the Measurement,
Reporting, and Verification (MRV) of climate-smart prac-
tices. Our study aims to address the following challenges
highlighted in previous research to examine the spatial
distribution of cover cropping and tillage practices. Pre-
vious research showed that crop residue and soil typically
exhibit distinct spectral signatures only at particular wave-
lengths (Nagler et al. 2003; Gao et al. 2022). Therefore, we
seek to employ few bands that are located at wavelengths of
1600 and 2300 nm which can help detect cellulose, lignin,
and hemicellulose in crop residues (Nagler et al. 2003;
Zheng et al. 2014). These wavelengths can also help dis-
tinguish the spectrum reflectance features of green vegeta-
tion, soil, and crop senescence (Cai et al. 2019).

In addition, optical bands fail to provide clear images
during cloudy days (Jennewein et al. 2022). Therefore, we
seek to employ SAR imagery, which operates in the
microwave spectrum, and offers an additional data source
capable of collecting imagery during nighttime and cloudy
days (McNairn et al. 1998). Finally, monitoring variations
in soil surface roughness, moisture content, and alterations
in the structure of crop residue resulting from tillage
activities poses a significant challenge (Jennewein et al.
2022; Zheng et al. 2014). Studies have shown that each
tillage instrument applies unique pressure, compaction, and
disturbance patterns to the soil, affecting surface roughness
and structure (Najafi et al. 2018a, 2018b). To address this
we seek to implement gray-level co-occurrence matrix
(GLCM) texture variables which has the considerable
advantage of capturing variations in soil texture and struc-
ture induced by tillage (Azzari et al. 2019; Najafi et al.
2018a; Zhao et al. 2016).

Our study is built to help address gaps in the application
readiness levels of cover crop and tillage mapping with an
application to support climate smart monitoring in the
Northwestern Corn Belt. We focus on eastern South Dakota
(SD), a region in the Northwestern Corn Belt characterized
by a diverse combination of grasslands and cropland
(O’Brien et al. 2020). The study area is also characterized
by a climate transitional zone that shows a decrease in
precipitation from east to west (Wang et al. 2021). There-
fore, we used various environmental drivers and variables
derived from satellite sensors to monitor the growth of
cover crops and tillage intensity.

The overarching research questions include: (1) What is
the spatial distribution of cover crops at field scale and

tillage practices across eastern SD? (2) What climatic, soil,
and topographic factors correlate with the adoption of on-
farm conservation practices? The objectives of this study
are threefold: (i) to develop a machine learning approach to
map the extent of cover crops at the field scale, (ii) to map
tillage practices at the field scale, and (iii) to evaluate the
relative importance of site-specific conditions on the
adoption of different conservation agriculture practices.
These outcomes will help track climate-smart adoption and
farm-level factors driving decision making.

Materials and Methods

Study Area

Agriculture is the most prominent industry in South Dakota,
with approximately 75% (>40,000 km2) of its farmed land
dedicated to the cultivation of corn (Zea mays) and soy-
beans (Glycine max) (Kolady et al. 2021) (Fig. 2). The
100th meridian and the Missouri River pass roughly
through the center of South Dakota, dividing it into roughly
equal regions. The eastern half has productive farmland
with adequate rainfall for row crops, whereas the western
half of the state is semiarid (Kolady et al. 2021; Bishop
et al. 2021). The yield, spatial distribution, and type of
cropland and natural vegetation are particularly vulnerable
to soil moisture and drought variability. As a result, rain-
dependent agricultural regions in the eastern SD may be
forced to contend with significantly altered extreme weather
patterns.

This region has a continental climate, with corn and
soybean fields planted in late April-May and harvested in
September-October (Pikul et al. 2008). Farmers typically
harvest the grain from most corn and soybean fields once
the plants have reached senescence. Sometimes, farmers
harvest corn early for silage, giving more time for cover
crops to grow before winter (Nowak et al. 2021). In 2022,
SD harvested around 6.6 million tons of green corn to
produce corn silage (USDA-NASS 2023). This phenom-
enon is particularly prevalent in regions in the vicinity of
dairy operations, cattle feedlots, or low-grain years due to
drought (Katsvairo and Cox 2000).

Field Data

We conducted field-edge surveys in 1394 crop fields across
eastern SD, which involved visual observations made from the
perimeter of the fields. We used the collected data from these
surveys to train, test, and validate our models. Cover crop and
tillage data were gathered in April/May of 2022 (n= 894) and
2023 (n= 500) to document field conditions following winter
snow melt and spring cover crop development, respectively,
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before the substantial growth of corn and soybeans (Fig. 2).
Additionally, we collected field data in November 2022
(n= 112) to record conditions in the fields after the senescence
of cash crops, fall tillage, and the emergence of fall cover crops.
At each field, we recorded the approximate amount of crop
residue cover, presence of living plants, previous crops, tillage
equipment employed, intensity of soil disturbance, and type of
tillage (conventional, minimum, or no-tillage). We visited some
of the fields twice, in the fall and spring, to validate the timing
of tillage, the harvest of previous crops, and the establishment
of new crops. We mainly identified winter wheat (Triticum
aestivum), rye (Secale cereale), oats (Avena sativa) and alfalfa
(Medicago sativa) species planted as cover crops on fields. We
also captured vertical and oblique photographs to document the
cover crop and tillage conditions for each location.

Data Sources

We used Google Earth Engine (GEE) to obtain dual-
polarization C-band SAR Sentinel-1 VV and VH bands
processed to backscatter coefficient (σ°) in decibels (dB).

Additionally, we incorporated Sentinel-2 Level 2A Bottom-
Of-Atmosphere (BOA) corrected reflectance products,
which include bands 2–8, 11, and 12. We applied cloud and
cloud shadow masks to ensure data accuracy using the
quality assessment (QA) band on the satellite images.
Images for tillage detection were acquired in spring, from
May 1 to May 30, for 2022 and 2023.

We used GEE to incorporate ten surface texture metrics
from each band’s gray level co-occurrence matrix (GLCM).
These metrics capture nuanced textural characteristics
across different features within the images, enhancing our
ability to represent spatial variations effectively. This
approach can be beneficial in improving the accuracy of
crop residue detection on the ground (Azzari et al. 2019;
Xiang et al. 2022). For the cover crop model, we used
Sentinel-2 Level 2A images from late October to early
December in 2022 to limit the inclusion of unharvested
summer crops, such as corn and soybeans, which can persist
late into the year. Additionally, we used mid-March to late-
April images to identify areas where cover crops were
present during the spring months. Sentinel-2 level 2A bands

Fig. 2 Locations of field data collections (n= 1394) for the years 2022–2023, overlaid on the crop data layer (2022) with county boundaries
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were used to calculate the six vegetation indices: normal-
ized difference vegetation index (NDVI), normalized dif-
ference tillage index (NDTI), normalized difference index 5
(NDI5), normalized difference index 7 (NDI7), normalized
difference residue index (NDRI), and simple normalized
difference vegetation index (SNDVI). These indices were
instrumental in characterizing vegetation and land cover
dynamics across the study area, as detailed in Supplemen-
tary Tables 1 and 2.

The cropland data layer (CDL) produced at 30 m reso-
lution by the United States Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS)
was used to obtain cropping pattern trends (USDA-NASS
2024). We obtained daily precipitation and temperature data
at 4.6 km spatial resolution from the Prism dataset (https://
prism.oregonstate.edu/) (Rupp et al. 2022). From this data,
we computed seasonal cumulative precipitation for both fall
(mid-October to mid-December) and spring (mid-March to
mid-May) in 2022 and 2023. Accumulated growing degree
days (AGDD) were calculated using the daily average
temperatures (Tmean) during the cover crop growing season
(October to April)(Kc et al. 2021). The base temperature
(Tbase) was set at 0 °C, since it is suitable for many cover
crop varieties (Mcmaster and Wilhelm 1997).

We also acquired daily land surface temperature (LST)
data at 1 km resolution from the Moderate Resolution
Imaging Spectroradiometer (MODIS) MOD11A1 V6.1
dataset to characterize surface temperature changes due to
cover crop and tillage growth. To generate elevation and
slope, we used SRTMGL1, a NASA Shuttle Radar Topo-
graphy Mission Global 1 arc-second (~30 m) V003 product
(NASA 2020; Wan et al. 2015). Soil textural information
was obtained from the Soil Survey Geographic (SSURGO)
database of the USDA (NRCS 2016). We acquired daily
surface soil moisture values at 0–5 cm depth from the Soil
Moisture Active Passive (SMAP) L-Band dataset at 9 km
spatial resolution (Chaubell et al. 2020). We procured black
sky albedo data from the MODIS MCD43A3 V6.1 dataset,
which has a resolution of 500 m. This information is crucial
because the presence of cover crops and residue cover on a
farm reduces the amount of solar energy absorbed by the
surface, potentially cooling the surrounding region (Davin
et al. 2014). Finally, we utilized the University of Idaho’s
Gridded Surface Meteorological Dataset (gridMET) and
TerraClimate to determine the vapor pressure deficit (VPD)
and wind speed for each pixel in the study area at 4 km
resolution (Abatzoglou 2013). The derived bands and layers
were resampled to a resolution of 10 m using the standard
resampling methods available in ArcGIS 10.2, to ensure
consistency and compatibility across datasets (Xiang et al.
2022) (Supplementary Table 3).

The crop field boundaries were originally delineated
using the 2022 and 2023 Cropland Data Layer (CDL)

layers, and then rectified using high-resolution images
from Google Earth Pro (Azzari et al. 2019; Luo et al.
2023). Field boundaries were buffered inward by 20 m, to
mitigate georectification errors and exclude impacts from
fencerows and buffer strips (Gelder et al. 2009). Fields
smaller than 100 m² were excluded from the analysis to
minimize adjacent effects from non-crop land classes,
such as forests, roads, and grass waterways (Zhou et al.
2022). For the tillage model, we randomly sampled five
pixels from each field, ensuring a minimum distance of 1
meter between each sample, to capture spatial variability
and enhance model performance (Azzari et al. 2019).
Conversely, in the cover crop model, we opted not to
increase the pixel sampling size due to the binary nature of
our field dataset (presence or absence of cover crops) and
the observed uniformity in pixel values within vegetated
fields.

Machine Learning Modeling

We developed two models using the collected field data:
one to predict the growth of cover crops and another to
determine the tillage intensity. We specified three tillage
classes for our tillage model: conventional, minimum, and
no-tillage farming practices. For our cover crop model, we
have identified three distinct categories: (i) Winter Kill -
representing cover crops planted in the fall, grew during the
fall season, but were undetected the subsequent spring; (ii)
Winter Hardy - signifying cover crops planted in the fall
that were established during the fall season and grew the
following spring; and (iii) Spring Emergent - indicating
cover crops not detected in the fall but emerged during the
following spring season.

We used a machine-learning classification approach, to
develop models for detecting cover crop presence and til-
lage intensity at a pixel level across eastern SD (Fig. 3). We
used the CatBoost package, a powerful gradient boosting
library developed specifically for handling categorical fea-
tures, in the Python programming language (Ibrahim et al.
2020; Prokhorenkova et al. 2018). To enhance model
accuracy and efficiency, we applied feature selection tech-
niques. Initially, a Pearson correlation threshold (r > 0.8)
was employed to remove highly correlated variables,
ensuring model stability and reducing redundancy (Taylor
and Bates 2013; Venkatesh et al. 2022; Zheng et al. 2012).
Additionally, we used mutual information, a method that
evaluates the level of independence between each predictor
and the response variable, effectively accommodating
nonlinear relationships (Herrera et al. 2015; Li et al. 2016).
The model was re-iterated to eliminate all the predictors
with the lowest significance scores, resulting in an opti-
mized subset of predictors that are detailed in Tables
1 and 2.
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Subsequently, we trained the machine learning algorithms
using this optimized predictor set. Pixel-level predictions
were aggregated to the field scale using ArcGIS’s zonal
statistics tool, facilitating the classification of fields based on
the majority of specific pixel types detected. Notably, only
pixels classified as corn and soybeans from 2021 and 2022
CDL datasets from USDA-NASS were utilized for training

the model, ensuring relevance and accuracy in agricultural
land-use classification (USDA-NASS 2024).

For both models we used the bootstrapping method
(including replacement) to divide the samples into 80% for

Table 1 List of independent variables selected for the cover crop
model in decreasing order of their importance

S. no Independent variables Codes

1. Normalized Difference Vegetation Index NDVI

2. Normalized Difference Tillage Index NDTI

3. Precipitation (fall/spring) PPTc

4. Surface texture texture

5. Wind velocity (fall/spring) Wind_speedC
6. Growing degree days (fall/spring) GDD

7. Land surface temperature (fall/spring) LSTc

8. Surface soil moisture (fall/spring) SSMC

9. Slope slope

10. Sentinel-1 SAR VH VH

Subscript C indicates that the variables were used for the cover crop
model

Table 2 List of independent variables selected for the tillage model in
decreasing order of their importance

Independent variables Codes

1. Spring land surface temperature LSTT

2. Spring precipitation PPTT

3. Spring wind velocity Wind_speedT
4. Spring surface soil moisture SSMT

5. Spring albedo AlbedoT
6. Surface texture texture

7. Sentinel 2 Level 2A-Shortwave InfraRed 1 B11

8. Normalized Difference Tillage Index NDTI

9. Sentinel 2 Level 2A-Near InfraRed B8

10. Normalized Difference Vegetation Index NDVI

11. Normalized Difference Residue Index NDRI

12. Crop Residue Cover Index CRC

13. Normalized Difference Index 5 NDI5

14. Slope slope

Subscript T indicates that the variables were used for the tillage model

Fig. 3 Schematic workflow for classifying tillage types and cover crops distribution across eastern South Dakota
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training and 20% for testing the cover crop and tillage
detection models (Saraf et al. 2023). Azzari et al. (2019)
suggested that the pixels within each field are likely to be
highly correlated and should not be split into training and
validation subsamples, as that would result in over-
estimating the model performance. Therefore, the training
dataset consisted of pixels extracted from 80% of the fields,
whereas the remaining 20% were used to test the classifi-
cation model (Seifert et al. 2018).

We implemented hyperparameter tuning to optimize
performance of our classification task (Prokhorenkova et al.
2018). We computed class weights using Scikit-learns
‘compute_class_weight’ function, to address class imbal-
ance ensuring each class was appropriately weighted during
training (Pedregosa et al. 2011). For hyperparameter tuning,
we defined a grid of potential values for key hyperpara-
meters such as iterations, depth, learning rate, and border
count. Using Grid Search with cross-validation, we identi-
fied the best combination of hyperparameters. The L2 reg-
ularization for leaf weights explored values 1, 3, 5, and 10,
which helped to control the complexity of the model and
prevent overfitting, while the border count values were set
at 128. The final model was configured with 500 boosting
iterations and set to the optimal values found during tuning
(Najafi et al. 2018a, 2018b). The evaluation metric was set
to ‘MultiClass’, and verbose was set to 100 for regular
updates. By systematically tuning these hyperparameters,
we optimized our CatBoost model for improved classifica-
tion performance (Pedregosa et al. 2011).

We used the testing dataset to assess the accuracy of the
trained model. We generated a confusion matrix to evaluate
the accuracy of the classifier, which illustrated the dis-
tribution of the classification results for the testing data
concerning their actual classes. Furthermore, we calculated
various metrics, including overall accuracy, kappa coeffi-
cient, and F1-score, to evaluate the classifier’s effectiveness.

Results

The relative accuracies of the cover crop and tillage models
were evaluated to better understand the predictive capability
of environmental, topographical, and Sentinel-based indices
within a cropland setting. The main output of the CatBoost
models developed in this research consist of field-scale
maps of cover crops and tillage practices with a spatial
resolution of 10 m.

Cover Crop Model

The model built to determine the presence or absence of
cover crops had an out-of-sample accuracy of 85%. Given
the binary nature of the data, more appropriate performance

measures, such as the kappa coefficient, F1-score, and
accuracy, registered metrics of 0.70, 0.94, and 0.84 (pre-
sence of cover crops), respectively (Table 3). We utilized
the Pearson correlation method with a threshold of <|0.8| to
verify the absence of correlations among our predictor
variables (Taylor and Bates 2013) (Supplementary Fig. 1).
The confusion matrix depicted high accuracy for predicting
both the presence (40%) and absence (45.19%) of cover
crops (Supplementary Table 4). Subsequently, we identified
ten predictor variables that exhibited the highest mutual
information scores, indicating their potential to explain the
greatest degree of spatial variability in cover crop presence
and absence (Table 2). Variable importance ranked NDVI
as the most important variable based on the CatBoost model
feature importance scores for cover crop mapping, followed
by NDTI, land surface temperature, wind speed, growing
degree days, and surface texture.

Our findings indicated that areas with more accumulated
growing degree days (>150 days) during the fall months
were more associated with cover cropping. Similarly, areas
experiencing rainfall exceeding 80 mm in the fall exhibited
a greater concentration of cover cropping. In general, our
study determined that seasonal NDVI, which measures the
amount of vegetation cover between the fall and spring, as
well as land surface temperature (LSTC), growing degree
days (GDD), and precipitation (PPTC), which influence crop
performance during the growing season, were the most
important factors in forecasting cover crop practices. These
variables significantly influence crop performance during
the growing season, making them essential for mapping
cover crop adoption.

Our cover crop model estimated that 4% (1561 km2) of
the corn-soybean fields in eastern SD had a cover crop
growing in either fall 2022 or spring 2023 (Fig. 4). Our
results indicated that approximately 590 km2 of fields with
cover crops were spring emergent, 664 km2 of cover-
cropped fields experienced winter kill, and 307 km2 of fields

Table 3 Classification report for tillage and cover crop models

Model Precision Recall F1-score Metrics

Tillage

Conventional tillage 0.78 0.71 0.74

Minimum tillage 0.83 0.90 0.86

No-tillage 0.88 0.78 0.83

Accuracy 0.83

Kappa 0.72

Cover crops

Absence 0.81 0.89 0.84

Presence 0.90 0.82 0.86

Accuracy 0.85

Kappa 0.70
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with cover crops were classified as winter hardy. We found
a high frequency of cover cropped fields in the southeastern
regions of eastern SD especially Hutchinson, Bon Homme,
Yankton, Codington, and Minnehaha counties. In contrast,
cover crops were generally not planted in the western part
of eastern SD.

Cover cropping was also more prevalent in eastern
counties such as Minnehaha, Turner, Brookings, and
Codington, where silt content was greater than 58% and
clay concentration was greater than 18% (Supplementary
Fig. 2). The results indicate that cover cropping in fall,
particularly in fields previously used for corn cultivation is
more widespread especially in the Bon Homme County.
Specifically, 25% of corn and soybean fields in Bon
Homme County had cover crops. Additionally, throughout
eastern SD, nearly 80% of the cover crops were planted
after the harvest of corn, as opposed to soybeans.

Tillage Model

For our tillage model, we selected 49 out of 137 predictor
variables based on the correlation (r) threshold of <|0.8|
(Supplementary Fig. 3). We calculated mutual information
and selected the 14 predictor variables that could explain

the most spatial variability of tillage types (Figs. 4 and 5).
Land surface temperature (LST), precipitation, wind
speed, soil moisture, and albedo were the most important
predictor variables in the tillage model. The CatBoost
model demonstrated an accuracy of 0.82 and a kappa
coefficient of 0.70, as shown in Table 3. The confusion
matrix shows high accuracy for predicting minimum til-
lage (47.47%), moderate accuracy for no till (24.29%),
and lower accuracy for conventional till (11.62%) (Sup-
plementary Table 5). Overall, the model exhibited a
greater recall rate of 90% for minimum tillage compared to
71% for conventional tillage.

The distribution of tillage practices varied across eastern
SD (Fig. 5). In 2022 and 2023, no-tillage techniques were
used on 43.7 and 53.7% of the total land planted with corn
and soybeans. In 2023, 15.8% of the fields were planted using
conventional tillage methods. In 2022 and 2023, more than
82% of the fields previously planted with corn and 70% of the
fields previously planted with soybeans were managed with
conservation tillage (minimum or no-tillage) practices (Table
4). In 2022 and 2023, no-tillage practices were widely used in
the western portions of eastern SD, mostly in the counties
surrounding the Missouri River. In contrast, the counties of
Moody, Roberts, Marshall, and Brookings in the eastern

Fig. 4 Field-level classification of cover crop plantings in fall 2022 and spring 2023
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section of the study area primarily employed conventional
tillage methods. We also found that the counties of Turner,
Lincoln, Lake, and Moody were the main regions where
minimum tillage was particularly prominent.

PPTT (Precipitation), NDI5, windT (wind speed), SSMT

(soil moisture), and albedo, which serve as proxies for land
surface properties related to climate, moisture, and green
cover change, were shown to be the more relevant factors
influencing the identification of tillage classes. Soils with
clay concentrations above 25% were more likely to be
conventional tilled than soils with less than 10% clay,
particularly in the eastern part of the study area (e.g., Deuel,
Brookings, Hamlin counties).

We observed a greater probability of conventional tillage
in Roberts and Marshall counties, which experienced higher
precipitation and surface soil moisture in fall and spring
(Supplementary Figs. 4 and 5). Conventional and minimum
tillage were most commonly used in counties with higher
land surface temperatures, such as Clay and Yankton
counties. Incorporating short-wave infrared bands, specifi-
cally B11, into the model helped differentiate among the
tillage practices. The order of the tillage indices from
highest to lowest considering the CatBoost feature impor-
tant scores was NDTI, NDRI, CRC, and NDI5.

The study revealed that a substantial portion of the cover
cropped areas, approximately 45% (882 km2) in 2022 and

Fig. 5 Field-level classification of tillage types for (a) 2022 (left) and (b) 2023 (right) across eastern SD using the CatBoost classifier

Table 4 Distribution of tillage
practices based on the previous
year’s crops for 2022 and 2023

Year Type of tillage Previous crop Total area

Corn Soybean

2022 Conventional Tillage 27.4% 1,827 km2 35.6% 2,373 km2 16.5% 6,668 km2

Minimum tillage 23.7% 2,864 km2 27.1% 3,275 km2 29.8% 12,084 km2

No-tillage 48.7% 10,590 km2 37.1% 8,061 km2 53.7% 21,745 km2

2023 Conventional Tillage 14.4% 927 km2 26.9% 1,732 km2 15.8% 6,439 km2

Minimum tillage 32.5% 5,307 km2 43.5% 7,103 km2 40.3% 16,330 km2

No-tillage 53.0% 9,396 km2 29.4% 5,212 km2 43.7% 17,728 km2
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52% (1029 km2) in 2023, were also managed without til-
lage. Notably, only 6% of the cover cropped fields utilized
conventional tillage in the spring of 2023 following the
termination of cover crops. Our results demonstrate a
positive correlation between the use of cover crops and
conservation tillage practices.

Discussion

Cover Crop Distribution

Our study evaluated the capability of visible, near infrared
(NIR), and shortwave-infrared (SWIR) indices, along with
environmental variables, to predict cover crop presence in
eastern SD. Overall, we found that cover crops were par-
ticularly prevalent in the southern (e.g., Bon Homme and
Yankton counties) and eastern regions (e.g., Deuel and
Codington counties) of eastern SD, which experience higher
temperatures and more precipitation). For example, south-
ern counties in eastern South Dakota accumulated more
growing degree days (GDDs) compared to northern coun-
ties in the study area. This regional variation aligns with
findings from studies conducted by Kc et al. (2021) and
Seifert et al. (2018) in the U.S. Midwest emphasizing, that
cover crops planted early in the fall have a higher likelihood
of survival. These crops require sufficient GDDs to estab-
lish before winter, highlighting the importance of environ-
mental conditions in their successful implementation
(Chatterjee et al. 2020).

We found that NDVI, a measure of greenness, is the
most important predictor of cover crop presence and
absence. Aside from agricultural weeds and perennial fea-
tures such as grassed waterways, cover crops are the pri-
mary green cover expected within corn and soybean fields
in the late fall. We also found that NDTI, which utilizes
SWIR bands, was a significant predictor in our cover crop
model. The use of satellite imagery from November, which
typically falls within the post-harvest period, underscores
the significance of NDTI in detecting cover crops. During
this period, fields either undergo tilling, or retain a sub-
stantial amount of crop residue. The NDTI helps differ-
entiate these scenarios: fields with cover crops exhibit
different spectral characteristics compared to tilled fields,
which are often bare or have minimal residue. Thus, the
NDTI is effective in identifying the presence or absence of
cover crops by distinguishing them from tilled fields.

We found that the vast majority (~80%) of cover crops
were planted after the harvest of corn rather than soybeans.
Our model did not, however, differentiate between corn
harvested for grain and corn harvested for silage. Previous
research and local expertise indicate that farmers are more
likely to plant cover crops in this region following corn

harvested for silage, which typically occurs by mid-Sep-
tember, than corn harvested for grain (Hively et al. 2015).
The combination of harvesting corn for silage followed by
the planting of a cover crop is more likely for two primary
reasons. First, the cover crop can be planted sooner in the
fall, which allows the cover crop more time to grow in the
fall (Nowak et al. 2021; Seifert et al. 2018). Second, farmers
who harvest corn for silage are generally near livestock, and
the cover crop biomass can serve as livestock feed. For
example, Bon Homme County, which contains the most
extensive Hutterite colony in North America (Riley and
Johnson 1970), had more than six times the use of cover
crops than the rest of eastern SD. Farms within the Hutterite
colony are known to use integrated crop-livestock practices
(Riley and Johnson 1970).

Tillage Practices Distribution

We used Sentinel-2 bands, tillage indices, textural features,
and environmental variables to identify tillage practices in
the study area. Our findings highlight the significant influ-
ence of pedoclimatic conditions on the adoption of different
tillage methods. Our observations indicate that conventional
tillage was the prevailing method in the eastern sections. In
contrast, no tillage is the predominant practice as we move
towards the western regions of eastern SD. These geo-
graphical variations in tillage practices might be due to
climatic shifts from east to west and precipitation-soil
moisture variability. No-tillage systems have shown better
soil water-use efficiency than conventional plow tillage
(Wang et al. 2020). In the eastern part of the study area,
where the soil is moist and favorable for tile drainage, it
may be necessary to till the soil to incorporate residues and
facilitate decomposition. In contrast, in the semiarid western
regions of eastern SD, where precipitation is less abundant,
the absence of tilling can conserve soil moisture by main-
taining crop residue coverage and decreasing soil water
evaporation (Blevins et al. 1971; Wang et al. 2020).

Land surface temperature emerged as the primary indi-
cator in our tillage model. LST measures the emission of
thermal radiance from the surface of the canopy in vege-
tated areas or bare land, where incoming solar energy
interacts with and increases ground temperature (Khan et al.
2021). Counties in the northeastern part of the study area,
such as Roberts, Day, and Grant, have lower LSTs com-
pared to counties in the southern region (Supplementary
Figs. 4 and 5). This decrease in LST reduces the rate at
which soil warms, potentially impacting plant growth
dynamics. Consequently, these regions may experience
increased adoption of conventional tillage practices. Con-
ventional tillage involves incorporating crop residues into
the soil, which enhances the absorption of incoming solar
radiation and consequently raises soil temperatures. In
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contrast, conservation tillage practices leave crop residues
on the soil surface, mitigating soil temperature increases
(Brien and Daigh 2019; Turmel et al. 2015). Studies by
Shen et al. (2018) and Barnes et al. (2021) have also
emphasized the importance of surface thermal data in
identifying areas with varying levels of crop residue cov-
erage and tillage.

We observed that the soils in counties such as Coding-
ton, Clay, Day and Marshall have high clay content
(25–40%) and silt content (58–72%) with poor internal
drainage (Westin 1951) (Supplementary Fig. 3). In these
areas, tillage and sowing operations typically occur fol-
lowing fall precipitation when the soil is damp and prone to
compaction (Chan et al. 2006). This compaction reduces the
availability of moisture and nutrients for root uptake, ulti-
mately leading to lower crop yields (Morrison et al. 2017).
Consequently, conventional tillage methods are commonly
employed to alleviate compaction and improve soil aeration
and infiltration (Bilen et al. 2010). Conversely, in regions
with sandy loam soils, which are prevalent in western parts
of the study area, rapid drainage and erosion susceptibility
encourage farmers to forego tillage (Bilen et al. 2010;
Westin 1951). These soils benefit from reduced disturbance,
which helps maintain soil structure and moisture levels
critical for crop productivity.

The variable importance of the CatBoost model showed
that SWIR-based indices and bands enhanced the prediction
capacity for detecting tillage practices. The results also
showed that NDTI and B11 had higher relative importance
than the other visible and NIR-based variables. These
results indicate that crop residues and soil exhibit similar
spectral characteristics in the visible and near-infrared
regions but differ significantly in the short-wave infrared
region. Therefore, the most effective way to distinguish
between crop residues and soil is to analyze the spectral
absorption characteristics of lignin and cellulose in crop
residues, particularly around the 2100 nm wavelength
(Hively et al. 2018; Nagler et al. 2003). Furthermore, B8
and NDVI were among the top predictors for detecting
conservation tillage. However, their contribution lagged
behind SWIR-based indices, as they cannot distinguish
between crop residues and soils. This limitation arises
because NIR-based variables like NDVI cannot effectively
discriminate between crop residues and soils due to their
similar reflectance properties in these spectral regions (Cai
et al. 2019; Hively et al. 2018; Sullivan et al. 2008).

Furthermore, our results found that a notable proportion
of farmers implemented both conservation tillage and cover
cropping, reflecting a growing trend towards implementing
conservation agriculture. Although only 4% of the fields had
cover crops, this overlap indicates that these practices can be
effectively combined. It is likely that farmers who adopt
cover crops are already practicing conservation tillage.

Our analysis revealed a low recall of 0.71 in conven-
tional tillage fields, likely influenced by varying amounts of
crop residue left behind by corn or soybeans in different
fields. This residue from the previous crops significantly
affected the classification outcome, introducing ambiguity
into the model’s analysis. Moreover, our findings indicate
that GLCM textural features did not serve as effective
variables for tillage mapping. GLCM texture metrics are
sensitive to spatial patterns in image data, but they may not
adequately capture the diverse residue patterns and soil
conditions resulting from different tillage practices (e.g.,
disking, moldboard plowing, chisel plowing).These differ-
ent practices create distinct residue patterns and soil dis-
persal, making it challenging to combine them into a single
category at a 10-meter resolution (Najafi et al. 2018a; Xiang
et al. 2022). The performance of Sentinel-1 data in our
study was also compromised due to operational issues with
Sentinel-1B. The failure of Sentinel-1B in December 2021
resulted in a lack of data availability in our study region
during critical periods.

Validations

The cover crop and tillage models demonstrated robust
accuracy, exceeding 80%, and reasonable kappa values. A
comparison of the estimated maps with the Natural
Resources Conservation Service (NRCS) 2022 county-level
cover crop and tillage estimates helped validate our find-
ings. The NRCS 2022 county-level cover crop estimates
showed that cover crops were more common in the western
and central parts of the eastern SD. This matches our esti-
mates of counties where a lot of land is covered by cover
crops (USDA-NASS, 2024). The 2022 NRCS estimates
showed that the eastern regions dominated conventional
tillage, while the western part of the state had a higher
prevalence of no tillage (USDA-NASS 2022).

The Conservation Technology Operations Center pub-
lished another dataset on tillage and cover crops (Gustafson
et al. 2019), wherein most of the conservation tillage acres
were concentrated in the Northwestern (Hyde, Sully, Hand)
regions of eastern SD. Conversely, their latest published
map of 2021 indicated a high density of cover crops in
Brookings, Minnehaha, and Codington counties, which
aligns with our model findings. Seifert et al. (2018) used
Landsat images to derive cover crop maps for the US
Midwest from 2008 to 2016, and their results align with our
findings that a comparatively lower portion (<10%) of the
eastern SD is managed with cover crops. Furthermore, the
findings of Azzari et al. (2019) align with our study, as the
county-level estimates of tillage maps from 2008 to 2016
indicate a continuous pattern of declining tilling intensity
towards the west and a prevalence of high-intensity tillage
in the eastern regions of the state.
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Limitations and Future Scope

Although our study significantly enhanced the capacity to
detect the presence of cover crops and tillage on a wide
spatial scale, it has certain noteworthy shortcomings that
could be addressed by further research. The field calibration
dataset used to derive the models was limited in spatial extent
to a few counties in the study regions. We also observed a
higher recall rate in no-tillage fields than in conventional
tillage fields. One potential factor contributing to this dis-
parity could be that low-intensity tillage practices tend to
leave a greater amount of crop residue cover in corn fields
than in soybean-cultivated fields. Consequently, incorporat-
ing historical data related to previous cash crops should be
viewed as a crucial component to be considered in future
research initiatives aimed at improving the model’s pre-
dictive capabilities. Moreover, it is important to recognize
that certain areas marked as having been planted with cover
crops may not display sufficient vegetative growth to be
detected by the satellite images used in this study for esti-
mating ground coverage. Conversely, regions with significant
weed infestations may be classified as covered. Additionally,
incorporating data on corn silage and mapping the geo-
graphic distribution of dairy farms could improve the pre-
dictive capabilities of our model while investigating the
influence of farm structure on the adoption of cover cropping.

Improved spaceborne sensors offer data beyond green-
ness for cover crop and tillage recognition. Researchers can
study cover crop species and identify plants from crop
residues and barren soils using hyperspectral imagery. The
increasing accessibility of thermal data with enhanced spa-
tial resolution, shown by the Ecosystem Spaceborne Ther-
mal Radiometer Experiment on Space Station (Hook and
Fisher 2019), allows additional research into the potential of
thermal data for predicting agricultural land-use practices.

It is important to gain a more comprehensive under-
standing of farmers’ subjective beliefs, including their opi-
nions regarding the significance of soil health and the
economic advantages associated with cover cropping and no
tillage. This understanding may offer valuable insights for
future research and extension endeavors to facilitate informed
adoption decisions. Furthermore, farmers’ participation in
cost-sharing programs and knowledge of CA benefits are
necessary to encourage the adoption of cover crops. We
acknowledge that sustained efforts to enhance precision are
imperative, considering the potential future utility of remote
sensing for policy monitoring and contributions.

Conclusions

Our results suggest that satellite-derived cover crop and
tillage maps can be rapidly produced in the eastern SD with

high confidence. Adopting conservation agriculture, such as
conservation tillage and cover crops, can help diversify
farm-level risks and promote on-farm biodiversity in the US
Corn Belt. In this context, it is important to design appro-
priate strategies to increase the adoption of conservation
practices and promote regenerative agriculture that protects
and restores ecosystem services. We predicted the spatial
distribution of cover crops and tillage practices across
eastern SD using the CatBoost classifier trained with field
samples and environmental drivers from different remote
sensing datasets. This paper presents an analysis of the
regional and temporal patterns of these activities and
examines the environmental factors that influence farmers’
decision-making process. Specifically, our findings indicate
that factors such as geographical location, climate, and soil
patterns of a farm can significantly impact the likelihood of
adopting conservation agriculture practices in the future.
The outcomes of this study may offer valuable insights into
potential areas for future research and extension priorities.
Our study contributes to the development of a measurement,
reporting, and verification (MRV) solution that can be uti-
lized to monitor various climate-smart practices in agri-
culture. This approach can benefit both public and private
sector organizations by enabling them to track landscapes
remotely and efficiently. This, in turn, can incentivize
farmers to adopt conservation practices, contributing to
climate change mitigation efforts and fostering sustainable
agricultural development.

Data Availability

Field data were collected by a commercial company
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“Cover crop” and “Tillage”.
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