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• A new mulch module in Daisy allows to 
describe Conservation Agriculture (CA) 
effects. 

• Two scenarios were simulated: one 
under CA and one with conventional 
tillage (CT). 

• Pesticide leaching to drains was not 
systematically different between CA and 
CT. 

• Pesticide degradation and sorption in 
mulch and soil showed vertical 
heterogeneity. 

• Global sensitivity analyses identified 7 
parameters out of 25 to improve 
simulations.  
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A B S T R A C T   

No-till and mulching are typical management operations in conservation agriculture (CA). To model pesticide 
degradation and leaching under a CA scenario, as compared to a conventional-tillage scenario (CT), the mulch 
module of the agro-hydrological model Daisy was extended. A Daisy soil column was parameterized with 
measurements of topsoil, mulch, and a realistic subsoil, and tested against published experimental data of 
pesticide fate in laboratory soil columns covered by mulch. Uncertainty and sensitivity analyses of the new Daisy 
version were conducted for a series of weather, soil, pesticide, and mulch parameters, using 4939 Monte Carlo 
simulations under each scenario. Results showed that there was no systematic difference in pesticide leaching 
from the topsoil (to the subsoil and directly to drains via drain-connected biopores) between CA and CT, but 
pesticide degradation and sorption were significantly different; degradation in the mulch and uppermost soil 
surface layer (0–3.5 cm) was larger in CA while degradation was larger in CT when considering the whole topsoil 
(0–30 cm). This difference for the whole topsoil could be explained by pesticide interception in CA in the part of 
the mulch not in direct contact with the soil where degradation is assumed not to occur. The sensitivity analysis 
highlighted non-influential parameters and seven parameters out of twenty-five to be better estimated to 
improve the accuracy of the predictions.  
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1. Introduction 

Conservation agriculture (CA) has gained in popularity in Europe 
over the past 10 years as a sustainable cropping system, following a 
global trend. According to Kassam et al. (2019), the cultivated area 
under CA in the world increased by 29 % from 2010 to 2015 reaching 
12.5 % of the global cropland. CA can be described by three main 
principles (FAO, 2022): i) minimum mechanical soil disturbance or no- 
till, ii) permanent soil organic cover through the introduction of cover 
crops and mulching (minimum 33 % of soil surface covered by crop 
residues), and iii) species diversification by implementing crop rotations 
with diversified cover crops (FAO, 2021). Adopting these principles 
often leads to a lower workload and fuel consumption, a reduction in soil 
erosion, and a potential for carbon sequestration in the surface soil layer. 
However, little is known about the effect of CA conversion on pesticide 
fate, especially about the effect of mulching and no-till. 

Soil erosion is reduced due to greater aggregate stability, less gravity- 
driven soil movement, and larger (macro) porosity and infiltrability in 
the topsoil. Such soil structural and hydraulic properties result from the 
higher inputs of fresh organic matter on the soil surface e.g., mulch, 
which soil organisms and especially earthworms feed on (Scopel et al., 
2013). This biological activity promotes the creation of vertical, 
continuous and rather permanent burrows in CA (Alletto et al., 2010), 
compared to CT where macropore continuity is frequently broken by 
tillage. A greater soil organic matter content in the surface layer can also 
increase the water-holding capacity of the soil, and thereby lower the air 
space available to rapidly absorb rainwater. When combined with an 
enhanced surface-connected macroporosity in CA, preferential flow may 
be triggered to a larger extent than in a ploughed field (Jarvis, 2007; 
Petersen et al., 2001). This is particularly important for drained agri-
cultural fields with subsurface tile drains, as earthworm channels near 
the drain lines have been shown to establish direct connections between 
the drains and the soil surface (Nielsen et al., 2015; Petersen et al., 
2012). Hence, preferential flow through surface- and drain-connected 
biopores in CA may lead to more pesticide leaching to subsurface 
drain lines than in CT (Reichenberger et al., 2007). 

On the other hand, the presence of mulch and structurally stable soil 
surface in CA can prevent the soil from sudden saturation and prefer-
ential flow. In their study, Findeling et al. (2007) estimated a storage 
capacity of 0.8 and 1.2 mm for rye and rape residues, respectively, 
showing the ability of mulch residues to store the water from small rain 
events. Pesticides can also be intercepted by the mulch so that their 
transfer to the soil surface is reduced or retarded, according to their 
sorption properties to organic carbon. In a soil column experiment, 
Aslam et al. (2015) showed that a mulch of maize and dolichos inter-
cepted and retained via sorption approximately 56 % of the pesticide s- 
metolachlor and 48 % of the glyphosate. Cassigneul et al. (2015) 
measured sorption coefficients, Kd, of glyphosate in several types of 
cover crops less than half that observed for s-metolachlor. Likewise, 
pesticides sorbing to organic carbon may be retained in the uppermost 
soil layer in CA because of the high organic matter content. This may 
thus decrease their mobility in soil, while non-sorbing pesticides may be 
degraded faster in the uppermost soil layer due to high microbial ac-
tivity (Henneron et al., 2015; Levanon et al., 1993; Wacker et al., 2022). 
In addition, previous work has demonstrated that the triggering of 
biopore flow and infiltration in biopores can be particularly high in 
areas with structurally damaged soil due to traffic of heavy machinery in 
CT (Vuaille et al., 2021). 

Modelling is an essential tool to predict pesticide fate under a large 
number of weather and field conditions. In particular, modelling 
simultaneously pesticide and water dynamics in a soil subject to no-till 
and mulching would help unravel the effect of CA on pesticide fate. In 
the European Union registration process for plant protection products, a 
modelling procedure is integrated to estimate the predicted environ-
mental concentrations of pesticides, based on realistic application sce-
narios described in the Generic guidance for FOCUS surface water 

Scenarios (FOCUS, 2001). The procedure includes models that simulate 
pesticide transport through surface run-off as affected by rainfall in-
tensity, slope, soil roughness and cover (the pesticide root zone model 
(PRZM), Suárez, 2005) and subsurface drain lines (MACRO, Jarvis and 
Larsbo, 2012). Nevertheless, apart from a surface run-off reduction in 
PRZM, these models do not account for the effect of crop residues on the 
water and pesticide dynamics in soil. 

Lammoglia et al. (2017) used a combination of the models STICS 
(Brisson et al., 1998) and MACRO to simulate crop growth and pesticide 
fate in diverse cropping systems that also include mulching. Their 
sensitivity analysis showed that the presence of a mulch at a density of 
10 t ha− 1 could significantly increase the cumulated amount of perco-
lated water down to 1 m depth and pesticide leaching compared to 
simulations with bare soil due to reduced soil evaporation and surface 
run-off and thus a promotion of water storage and infiltration. However, 
the model setup considered neither pesticide interception and degra-
dation capacity in the mulch, nor the enhanced microbial activity due to 
mulching. Marín-Benito et al. (2018) also used MACRO to model s- 
metolachlor fate in CA. Their approach to simulate the presence of a 
mulch consisted in parameterizing a pure sandy soil layer of 5 cm at the 
top of the soil column, with structural and hydraulic properties corre-
sponding to a highly organic soil layer, combined with reduced soil 
evaporation calibrated to field data. Both pesticide degradation and 
sorption were simulated in the mulch layer. Predictions of water 
percolation, soil temperature and herbicide leaching appeared satisfac-
tory compared to the field observations, which however was not the case 
for predictions of the soil water content. In addition, the study remained 
limited to the specific case of naturally drained soil. Aslam et al. (2018) 
simulated the interception, sorption, leaching, and degradation of s- 
metolachlor and glyphosate in laboratory soil columns covered by 
mulch with the mechanistic model PASTIS (Garnier et al., 2003). The 
model predictions showed a good agreement with the measurements. 
Their results revealed that high and infrequent rain increased pesticide 
wash-off from mulch, while low and frequent rain stimulated pesticide 
biodegradation due to a higher soil water content. Yet, these simulations 
represented laboratory conditions and did not consider the presence of 
macropores and drains. 

The mechanistic model Daisy developed for flat agricultural fields 
(Abrahamsen and Hansen, 2000; Hansen et al., 2012a) can be used to 
simulate pesticide leaching (Hansen et al., 2012b) and in particular 
leaching to drains (Holbak et al., 2022). The Richards and advection- 
dispersion equations are used for calculating water and solute trans-
port in the soil (Mollerup et al., 2014). The heat flow is calculated with 
the conduction-convection equation (Abrahamsen and Hansen, 2000). 
Pesticide degradation in the soil is described by first-order kinetics and is 
affected by soil temperature, pressure potential, and depth. Pesticide 
sorption to soil particles can be assumed instantaneous using isotherm 
models or time-dependent using sorption kinetics. Daisy includes a 
biopore model (Holbak et al., 2021), which simulates preferential flow 
and solute transport in macropores. The term biopore is used as these 
macropores mostly refer to those biologically formed i.e., earthworm 
burrows and root channels. Such biopores can be parameterized based 
on direct field measurements (Nielsen et al., 2015; Petersen et al., 2012). 
In addition, Daisy has a dynamic crop module (Gyldengren et al., 2020), 
which allows simulating different growth conditions as affected by 
weather and soil properties. 

Along with an organic matter model describing multiple pools for 
soil microbial biomass and soil organic matter, Daisy can simulate 
different farming practices and their effects on water and nutrient dy-
namics (Abrahamsen et al., 2010; Bruun et al., 2003). 

With these characteristics, Daisy includes a large number of pa-
rameters describing, among others, the soil column, weather charac-
teristics, crops, pesticides, and tillage type. To determine the influence 
of specific parameters on model predictions, sensitivity analyses are 
generally carried out varying one parameter at a time (Saltelli et al., 
2010). However, this method does not account for potential interactions 
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between parameters. Global sensitivity analysis (GSA) methods, on the 
other hand, offer the possibility to estimate the influence of a multitude 
of parameter combinations on predictions, and therefore to calculate the 
influence of parameters both through their individual and through 
combined effect (Saltelli et al., 2008). No GSA has yet been performed 
for Daisy on pesticide leaching and degradation. 

The objective of the present study was twofold (Fig. 1A). Based on a 
new mulch module in Daisy, the first objective was to compare pesticide 
leaching and pesticide degradation amounts as simulated by Daisy be-
tween a CA and a conventional tillage (CT) scenario. The two cropping 
scenarios were described with specific topsoil measurements. Pesticide 
leaching refers in the following to leaching from the topsoil to the 
subsoil (leaching from 30 cm depth) or from the topsoil directly to the 
drains through biopore flow. 

Second, the sensitivity of the simulated leaching and degradation 
towards a series of parameters was investigated, to determine which 
ones had the highest influence on the predictions and should therefore 
be better estimated. The hypotheses were that pesticide leaching to the 
subsoil and drains would be similar in CA and CT despite the higher 
density of biopores in CA, due to more pesticide interception, sorption 

and degradation in mulch and soil surface in the CA system. 
The Daisy model and the extension of the mulch module to simulate 

water and pesticide dynamics in mulch e.g., interception, retention, 
degradation and wash-off, based on PASTIS mulch module (Aslam et al., 
2018; Findeling et al., 2003, 2007; Garnier et al., 2003) are first pre-
sented. The laboratory and field measurements used to fit new param-
eters via inverse modelling, test the new Daisy mulch module and 
parameterize Daisy for CA and CT scenarios (Fig. 1A, steps 1 and 2) are 
then described. Second, the modelling setup used to conduct uncertainty 
analysis and GSA with Sobol indices (Saltelli et al., 2008) for a series of 
soil, mulch, pesticide and weather parameters – including the newly 
integrated parameters (Fig. 1A, steps 2 and 3) – are introduced. Thou-
sands of simulations are run with unique combinations of parameter 
values for the uncertainty analysis and used subsequently for calculating 
Sobol sensitivity indices. These indices are used to estimate 1) which 
parameters should be better measured or estimated due to their rela-
tively high influence on the predictions of leaching and degradation, but 
also 2) which parameters can be fixed to any value in their distribution 
due to their negligible direct or indirect influence on the output variable. 

At last, the mulch module test against experimental data and the 

Fig. 1. Material and methods overview. A: Extension of Daisy mulch module, uncertainty and sensitivity analyses. B: Standard organic matter model in Daisy 
(Abrahamsen et al., 2010, unpublished manuscript). 
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results of the simulations are presented and discussed. 

2. Material and methods 

2.1. The Daisy model 

2.1.1. Tillage operations in Daisy 
Tillage in Daisy is implemented to have three effects: 1) removing 

any crops on the field, 2) incorporating a fraction of the organic matter 
from the surface into the soil at a given depth, and 3) homogenizing the 
content of the soil in the affected depth e.g. soil water content and 
organic matter contents. Under the CT scenario the specific “ploughing” 
operation is used, where two soil intervals (named top and bottom) are 
homogenized and then swapped. The content of the top interval results 
at the bottom, and vice versa. 

2.1.2. Daisy’s organic matter model 
The organic matter model in Daisy is described by three compart-

ments (Fig. 1B): 1) the added organic matter (AOM), which describes 
fresh organic material such as crop residues, organic fertilizers and 
rhizodeposition, 2) the soil microbial biomass (SMB), which corre-
sponds to the living microbial compartment, and 3) the soil humus 
named soil organic matter (SOM), which describes humified organic 
matter. These AOM, SMB and SOM compartments are by default divided 
into two pools. Each pool is defined by a specific size (g C cm− 3 soil), 
turnover rate (d− 1 or y− 1), efficiency rate (% of carbon dioxide released 
during turnover) and carbon:nitrogen (C:N) ratio (Fig. 1B). In each 
compartment, the first pool (AOM1, SMB1, SOM1) is characterized by a 
slow turnover rate compared to the second pool (AOM2, SMB2, SOM2). 
Each source of added organic matter is represented by a separate set of 
AOM pools, so the total number of AOM pools in the system is variable. 
Fresh organic matter added to the soil through fertilization and crop 
residues, including dead leaves from the cultivated crops, first reach the 
soil surface. From the soil surface, it is bioincorporated by earthworms at 
a certain speed (g dry mass m− 2 h− 1) and can be incorporated by soil 
tillage. Bioincorporation is affected by the C:N ratio of the organic 
matter. Soil tillage uniformly distributes soil organic matter in the tilled 
layer. AOM pools are thereafter degraded by SMB2. As living pools, both 
SMB1 and SMB2 have maintenance rates that relate to the fraction 
degraded to maintain the organisms’ functions (h− 1). When degrading, 
SMB2 is transformed into SOM2 while a fraction returns to the pool. 
While SOM and SMB pools are only defined in the soil, AOM pools have 
an optional above-ground component. These constitute a mulch layer in 
the model that influences water and pesticide interception and evapo-
transpiration. Soil and surface degradations of AOM pools in Daisy 
follow first-order reaction kinetics and are affected by soil water pres-
sure potential, temperature as well as N availability (Hansen et al., 
1991). 

The division between AOM1 and AOM2 and their properties can be 
determined by lab incubation experiments for specific types of added 
organic matter. The properties of the SMB and SOM pools have been 
determined by a combination of short-term (Mueller et al., 1997) and 
long-term experiments (Bruun et al., 2003). 

2.2. New mulch module 

Daisy mulch biomass consists of the above-ground part of all the 
AOM pools (Fig. 1B). In the present study, the mulch module was 
improved based on PASTIS mulch module described in Aslam et al. 
(2018) and Findeling et al. (2007) and using PASTIS methods available 
in the Virtual Soil platform (Lafolie et al., 2014). The objective was to 
describe organic matter, water and pesticide dynamics in mulch and soil 
with fewer and less site-specific parameters in order to develop a more 
generalizable module. As such, Daisy mulch was developed as a one- 
layer mulch compared to the two layers in PASTIS. 

2.2.1. Mulch organic matter 
The new Daisy mulch is composed of one layer of which the structure 

is characterized by a height (cm) (Eq. (1)) and a mulch cover (− ) (Eq. 
(2)). height and cover are derived from a variable dry mass, DM (g cm− 2), 
and three user-defined parameters i.e., the mulch bulk density, ρbm (g 
cm− 3), the specific mulch area index, SpMAI (cm2 g− 1), and an extinc-
tion coefficient, γ (− ). 

height =
DM
ρbm

(1)  

cover = 1 − e− γ SpMAI DM (2) 

Mulch residues in Daisy first degrade to form dissolved organic 
matter (DOM) as described in Garnier et al. (2003). DOM is character-
ized by C and N contents also referred to as DOC and DON, respectively. 
DOM is transported from mulch to soil via wash-off (2.2.3) where it is 
further degraded. DOM does not impact pesticide transport via sorption. 

Mulch decomposition to DOM in Daisy is based on the same 
description of decomposition by SMB2 as the surface AOM pools (2.1.2) 
multiplied however by a microbial factor fb (− ): 

dAOMsurface

dt
= − fbfhfTfNAOMsurface(t) (3) 

With fh, fT, and fN the soil water pressure potential, temperature as 
well as N availability factors (Hansen et al., 1991). fb is inspired by 
Michaëlis-Menten reaction kinetics (Garnier et al., 2003) such as: 

fb =
SMBref + KM

SMBref

SMB2
SMB2 + KM

(4) 

With SMBref (g C cm− 3) a specific reference C content of the SMB 
pool, SMB2 (g C cm− 3) the active soil organic biomass, assumed to 
decompose AOM, and KM (g C cm− 3) a Michaëlis-Menten constant for 
the decomposition of AOM. If SMB2 equals SMBref , fb becomes 1. Mulch 
decomposition is set to only occur in the part of the mulch in direct 
contact with the soil and its microorganisms. This is estimated to 
correspond to 20 % of the height of the mulch based on PASTIS 
description (Aslam et al., 2018). 

In the present study, SMBref was set equal to KM, making fb equal to 1 
for a SMB2 as large as the KM constant value (Eq. (4)). This reflects the 
assumption that under favourable conditions, the microbial factor is not 
smaller than 1. Factor fb (Eq. (5)) thus tends towards 0 for very large 
KM values and towards 2 for a KM value equal to 0. The considered SMB2 
pool is from the soil layer ΔzM (cm) affecting processes in the mulch 
layer (where residues are in direct contact). ΔzM is set to 5 cm depth in 
this study, which reflects observations from laboratory studies (Aslam 
et al., 2018; Findeling et al., 2007). 

fb = 2
SMB2

SMB2 + KM
(5)  

2.2.2. Mulch water 
Water retention in the mulch layer is described by Eq. (6): 

w(h) = wR +(wM − wR)ekh (6)  

where w(h) (g g− 1) corresponds to the gravimetric water content at a soil 
water pressure head h (cm), wM (g g− 1) the maximal water content, wR 
(g g− 1) the residual water content, and k (cm− 1) the exponential curve 
parameter. 

Water interception by the mulch layer is described in Eq. (7) as 
dependent on the amount of water already retained by the mulch, w, the 
maximal and residual water contents, wM and wR: 

Imulch water = rain cover e− αwM − wR
wM − w , if w < wM (7)  

Imulch water = 0, if w = wM 
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where Imulch water (mm h− 1) represents the amount of water being inter-
cepted by the mulch, rain (mm h− 1) the amount of water falling on the 
ground, cover the mulch cover defined in Eq. (2), and α (− ) the mulch 
water recharge capacity as also defined in Findeling et al. (2007). Water 
falling on mulch but not stored percolates through the mulch layer and 
reaches the soil. Water evaporation occurs on mulch and on the pro-
portion of soil not covered by mulch. 

In addition, water can move between the mulch layer and the soil by 
capillarity according to the Darcy’s flow equation (q, cm h− 1, Eq. (8)), 
based on the hydraulic conductivity of the soil surface, K(h) (cm h− 1), 
the differences of hydraulic potential and height between mulch and soil 
surface (Δh and ΔzM in cm, respectively), and an exchange factor fe (− ) 
describing the continuity between mulch and soil: 

q = − K(h)
Δh

ΔzM
fe (8)  

where Δh is the difference between the water pressure in the mulch (Eq. 
(6)) and the water pressure in the middle of the soil layer affecting 
processes in the mulch layer, defined as ΔzM (2.2.1). 

2.2.3. Pesticides and other chemicals in mulch 
When sprayed on the field, pesticides are intercepted by mulch ac-

cording to its soil cover. During rainfall, if the mulch water content 
reaches a given saturation index Si (%), pesticides can diffuse from 
mulch water to the percolating rainwater and thereby enter the soil 
surface through wash-off according to the mulch mass exchange rate, Ep 
(h− 1) in Eq. (9), as also described in Aslam et al. (2018). 

Imulch pest = − EpCpest (9) 

With Imulch pest (g g− 1 h− 1) being the quantity of pesticide intercepted 
by the mulch and Cpest (g g− 1) the pesticide content in the mulch water. 

Pesticides stored in mulch are also subject to degradation based on 
the percentage of mulch in contact with the soil (20 % of the dry mass 
according to Aslam et al., 2018) and the amount of wash-off during 
rainfall. Pesticide degradation is assumed to occur through co- 
metabolism. In a co-metabolic transformation, the soil microbial 
biomass growing during mulch decomposition can fortuitously trans-
form pesticides (Bollag and Liu, 1990; Aslam et al., 2018). Pesticide 
degradation in Daisy follows first-order reaction kinetics and is affected 
by soil water pressure potential, temperature and depth (Abrahamsen 
and Hansen, 2000). In this new version, it is also subjected to the mi-
crobial factor fb (Eq. (4)) to account for co-metabolism. In Daisy mulch 
module, pesticide and mulch degradations are thus controlled by the 
same microbial biomass (SMB2 pool) and occur simultaneously. The KM 
factor in Eq. (4) might differ between pesticides and organic residues, as 
the increase in SMB2 might not necessarily affect equivalently the 
degradation of mulch and pesticide. They are therefore labelled KMM and 
KMP, respectively. 

Pesticide sorption to soil and organic matter is assumed instanta-
neous using the linear Freundlich isotherm (Table 2 and Table 3) and 
does not affect pesticide degradation. 

2.3. Field experiment 

2.3.1. Experimental layout 
The monitored fields were part of a 4-year project (2017–2020), 

which investigated the environmental effects of CA. Two farms located 
on Zealand, Denmark, and separated by about 2 km were selected. The 
two farms represent two different cropping systems, CT with ploughing 
and CA. The investigated fields in both farms are characterized by a 
loamy texture and present a plough pan at 25 cm depth (Table 1). At the 
CT farm, annual mouldboard ploughing has been conducted for at least 
30 years to cultivate commonly grown crops like barley, wheat and rape 
along with harrowing at about 5 cm depth. At the CA farm, crops have 
been cultivated without ploughing since 2000, but no-till combined with 

CA principles have been applied since 2011, developing a surface ho-
rizon rich in organic matter down to 3.5 cm. Thus, the investigated fields 
presented physical characteristics typical of the CA and CT systems. 

During the 4 years of the project, a 2-year crop rotation winter 
wheat–spring barley was implemented on both fields with cover crop 
mixtures composed of vetch, oilseed radish, and oat placed between all 
cereal crops. On each field, soil plots were established according to a 
randomised complete block design with four blocks each containing four 
cover crop treatments, namely “no cover crop”, “vetch and oat”, “vetch 
and oilseed radish” and “oilseed radish”. 

2.3.2. Soil data 
Soil texture was determined at 15–20 cm depth (n = 16) on both field 

sites (Table 1) by a combination of sieving and sedimentation as 
described by Gee and Or (2002), and soil organic matter at two depths i. 
e., 0–3.5 and 15–20 cm (n = 32), by the loss-on-ignition method (Nelson 
and Sommers, 1996). 

Undisturbed soil core samples of 100 cm3 were collected five times 
between 2017 and 2019 – three times in autumn and twice in spring 
(although not all depths of the topsoil were equally sampled). Sampling 
was performed in triplicates in each block, from 2 cover crop treatments 
“without cover crop” and “vetch and oat”, in full-N fertilization plots, 
and at three depths i.e., 0–3.5 (n = 224 for five sampling series in each 
cropping system), 15–20 (n = 192 for four sampling series) and 25–30 
cm (n = 54 for one sampling series in each system). Samples with 
continuous macropores were discarded in the field based on visible in-
spection. This resulted in 470 samples in total, stored at 4 ◦C until 
analyzed in the laboratory. 

The cores were saturated from below with de-aired tap water on a 
sand table and then equilibrated at 100-hPa suction. The equilibrium 
water content Mw (representing field capacity for this soil type) was 
measured. The samples were subsequently dried at 105 ◦C to obtain the 
dry bulk density ρb (g cm− 3). The density of drain-connected biopores 
was estimated in September 2020 at the CA farm on a nearby field using 
the smoke injection technique described by Petersen et al. (2012). A 
drain line of 14 m was investigated and smoke-emitting biopores were 
reported according to their distance from the smoke-injected pipe. 

2.3.3. Mulch data 
To investigate the structural and hydraulic properties of the mulch in 

Table 1 
Distributions of soil texture, organic matter content and soil physical and hy-
draulic parameters for the two experimental fields. The parameters follow 
Normal distributions with corresponding means and standard deviation in pa-
rentheses. The texture is given in the USDA classification system.  

Measurement CA CT 

Layer 1 
(0–3.5 
cm) 

Layer 2 
(3.5–25 

cm) 

Layer 3 
(25–30 

cm) 

Layer 
1 

(0–5 
cm) 

Layer 
2 

(5–25 
cm) 

Layer 3 
(25–30 

cm) 

Soil texture and organic matter 
Sand (%) 46.1 (1.9) 46.9 (1.9) 
Silt (%) 38.5 (1.3) 37.4 (1.0) 
Clay (%) 15.4 (1.2) 15.7 (1.5) 
Organic 

matter (%) 
5.1 

(0.9) 
3.3 (0.6) 4.0 

(1.0) 
3.6 (0.8) 

Number of 
replicates 8 8 8 8  

Soil physical and hydraulic parameters 
Bulk density 

ρb (g cm− 3) 
1.35 

(0.11) 
1.59 

(0.11) 
1.73 

(0.05) 
1.31 

(0.14) 
1.43 

(0.13) 
1.71 

(0.09) 
Field capacity 

θFC (%) 
34.46 
(3.74) 

27.60 
(3.15) 

24.81 
(2.04) 

26.96 
(4.00) 

28.88 
(3.36) 

28.26 
(2.42) 

Number of 
replicates 

112 96 27 112 96 27  
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the CA field, bulk samples were collected two times in three blocks and 
from the four cover crop treatments in November 2019 and March 2020, 
respectively. Each sample was collected on an area of 0.25 m2 and the 
approximate thickness of the mulch layer was measured. Fresh sub-
samples of mulch of about 15 g were first dried at 65 ◦C for 48 h to 
standardize the initial water contents. They were then immersed in tap 
water for 16 h and subsequently drained on a 1-mm mesh sieve for 20 
min. The wetted mulch was weighed and dried afterwards at 65 and 
120 ◦C until constant weight was reached (Iqbal et al., 2013) to deter-
mine maximal and residual gravimetric water contents, respectively. 
The organic matter content of the collected mulch was measured with 
the loss-on-ignition method (Nelson and Sommers, 1996) using 
shredded mulch subsamples (2 cm long debris approximately) of about 
5 g. The maximal and residual gravimetric water contents as well as the 
density measured in the field were corrected for the content of mineral 
soil particles. 

To measure the mulch water retention curve, a third set of samples 
(n = 6) was collected in November 2020. A number of six ring cells (250- 
cm3) of about 40 g (wet weight) were established with the collected 
mulch. The six rings were immerged in degassed water for 16 h and 
subsequently drained on a 1-mm mesh sieve for 20 min, before they 
were mounted on automated sensor units with integrated tensiometers 
(HYPROP version 2015, UMS GmbH, Munich, Germany). Water tension 
in each unit was measured at two levels of a sample with two tensi-
ometer shafts for six days. Twice a day, the units were weighed to 
measure water loss through evaporation. The measurements from the 
two tensiometer shafts were collected until the uppermost part of the 
mulch (2.5 cm) dried, as this was considered representative of a 2.5-cm 
high layer of mulch. After six days, the rings were detached from the 
units and dried at 105 ◦C for 24 h in order to determine dry weights and 
estimate mulch water content under the measured tensions. Each of the 
water retention curves from the uppermost 2.5 cm of mulch was fitted by 
least-squares method to the exponential model introduce in Eq. (6) in 
the interval of water tension 0–10 cm. 

2.3.4. Statistical analyses of field measurements 
The measurements of soil bulk density and field capacity were 

analyzed with the statistical software R version 4.0.2 (R Core Team, 
2020). The measurements were individually fitted to linear mixed-effect 
models with the lme4 package (Bates et al., 2015). The interaction be-
tween cropping system, sampling time, and sampling depth was 
considered as a fixed effect while block and cover crop treatments were 
included as random effects. This allowed a pair-wise comparison be-
tween the combinations of system type, sampling time and sampling 
depth, while considering that some variation in the bulk density and 
field capacity may be due to variation between blocks and cover crop 
treatments. 

The fifth set of measurements taken in 2019 was discarded from the 
analysis as well as the ones from the plough pan (25–30 cm depth) 
because of missing samples and measurements for certain soil depths 
and field areas. 

Similarly, the measurements of maximal and residual water contents 
of mulch along with mulch bulk density were fitted to linear mixed- 
effect models, with sampling time as fixed effect and block and cover 
crop treatments as random effects. 

The quantile-quantile and residual plots of all mixed-effect models 
were visually assessed. The pairwise comparisons between the different 
treatments were adjusted for multiplicity using the single-step approach 
(Hothorn et al., 2008). 

2.4. Test of the mulch module against experimental data 

To test the new Daisy mulch module, the soil column experiments 
from Aslam et al. (2018) were used. In these experiments, maize and 
dolichos residues were placed on top of 25-cm soil columns at a density 
of 758 g m− 2. The soil columns were composed of two horizons sampled 

at two different depths – 0-5 and 5–25 cm – on an experimental site of 
INRAe, Versailles, France. After application of both s-metolachlor and 
glyphosate at doses of 1.04 and 1.29 kg active ingredient ha− 1, respec-
tively, the soil columns were subject to two different artificial rainfall 
regimes with distilled water, namely low and frequent (LF-R) or high 
and infrequent regime (HI-R). All soil physical properties and details 
about rainfall regimes and laboratory conditions were retrieved from 
Aslam et al. (2018). The different organic matter pools of the mulch 
were described in Daisy as different AOM pools with specific C:N ratios, 
solubilisation rates to the DOM pool and assimilation yields by SMB2 
according to Iqbal et al. (2014) and Garnier et al. (2003). 

Table 2 gives an overview of the mulch and pesticide parameteri-
zation in Daisy. The value ranges of pesticide half-life time (DT50) and 
sorption were retrieved from EFSA reports (EFSA, 2004, 2015). With a 
mulch thickness of 3 cm, the decompose height factor was set to 0.6 cm 
to fit a 20 % initial proportion of dry mass in direct contact with the soil 
(Aslam et al., 2018). The measured maximal and residual water contents 
(see Section 2.3.3) were used in the parameterization. The mulch spe-
cific area index and extinction coefficient for mulch cover calculation 
(Eq. (2)) were taken from the study of Macena et al. (2003) where these 
values were measured and estimated for millet. 

Five soil parameters of the van Genuchten-Mualem model of soil 
hydraulic properties (Mualem, 1976; van Genuchten, 1980) (Table S3 

Table 2 
Mulch module calibration: fixed and calibrated parameters of the mulch and 
pesticides s-metolachlor and glyphosate. DM stands for dry mass, AOM for added 
organic matter pool.   

Parameter name 
and unit 

Description Value (range) 

Fixed 
parameters 

SpMAI (m2 kg− 1 

DM) 
Area of soil covered by 1 
kg of mulch 

3.92 

γ (− ) 
Factor of the specific 
area index 0.452 

KMM (g C cm− 3) 
Michaëlis-Menten 
constant for AOM 
degradation 

0.0004551 

KMP (g C cm− 3) 
Michaëlis-Menten 
constant for pesticide 
degradation 

0.0004551 

Calibrated 
parameters 

WM (g g− 1 DM) 
Maximal gravimetric 
water content of the 
mulch 

2.25 (5.59 ±
1.10)5 

α (− ) Mulch propensity to 
water recharge 

1.2 (0.5–2)3 

k (cm− 1) 
Exponential water 
retention curve 
parameter 

0.113 (0.097 ±
0.027)5 

fe (− ) 
Factor of the downwards 
Darcy water flow from 
mulch to soil 

0.4 (0–1)3 

Si (%) Saturation index for 
wash-off 

4 (1–99)3 

DT50surface, 
DT50mulch, 
DT50soil (days) 

Half-life time on surface, 
mulch and in soil 
(assumed equal in the 
study) 

S-metolachlor: 
9.6 (7.6–37.6)4 

Glyphosate: 
140.6 
(3.7–160.5)4 

Kd (mL g− 1) Linear sorption 
coefficient 

S-metolachlor: 
40.9 (1.3–55.8)4 

Glyphosate: 
752.9 (5–811)4 

Ep (h− 1) 
Exchange rate of 
pesticide between mulch 
water and rainwater 

S-metolachlor: 
0.4 (0–1.5)1 

Glyphosate: 0.8 
(0–1.5)1  

1 From or estimated from Aslam et al. (2018); Iqbal et al. (2013); Garnier et al. 
(2003). 

2 Macena et al. (2003). 
3 Based on Aslam et al. (2018); Iqbal et al. (2014, 2013). 
4 EFSA (2015, 2004). 
5 Estimated from measurements. 
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and Fig. S1 in supplementary material) were hand fitted for the two 
regimes given the parameters from Aslam et al. (2018). The n parameter 
was found to differ between the two regimes. This was attributed to 
differences in the soil packing during the establishment of the soil col-
umns and effects on the pore-size distribution (van Genuchten, 1980). 

A total of 8 mulch and pesticide parameters (Table 2) were auto-
matically estimated via inverse modelling with the shuffled complex 
evolution algorithm developed at the University of Arizona (SCE-UA) 
(Duan et al., 1994). The simulated and measured contents of water and 
pesticide in mulch and the content of s-metolachlor in soil for the HI-R 
regime in Aslam et al. (2018) were used. Due to analytical issues, <6 % 
of the applied glyphosate could be measured in the soil by Aslam et al. 
(2018) during their experiment. Therefore, the glyphosate parameters 
were not estimated using the measurements of glyphosate concentra-
tions in soil. 

A specific value for the parameter Ep (Eq. (9)) was estimated for s- 
metolachlor and glyphosate separately, as this relates to the sorption 
capacity of pesticides to the mulch residues in Daisy. The best fit was 
defined by the lowest root mean square error (RMSE, Eq. (10)). The 
parameterization was subsequently tested under the LF-R regime. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(xi − x̂i)

2

N

√
√
√
√
√

(10)  

where xi and x̂i are the measured and simulated data points, respec-
tively, and N the total number of measurements. 

2.5. Uncertainty and sensitivity analyses of Daisy 

2.5.1. Parameters and uncertainty 
Five sources of parameter uncertainty in the modelling procedure 

were considered (Table 1 and Table 3): i) structural and hydraulic 
properties of soil and mulch, ii) density of measured drain-connected 
biopores, iii) pesticide physical and chemical characteristics, iv) mulch 
biological properties related to residues decomposition to investigate 
the effect of microbial activity on pesticide dynamics in mulch, and v) 
weather conditions to reflect weather variability. The distribution of 
mulch and pesticide parameters, along with drain-connected biopore 
density and weather series, were common to both CA and CT cropping 
scenarios, while the soil parameters had specific distributions under 
both scenarios. 

The drain-connected biopore density (Table 3) was set to follow a 
uniform distribution with bounds of 0.1 and 14 m− 2 based on the 

measured average density of 7 ± 0.7 (standard error) smoke-emitting 
biopores m− 2 in CA. This range was used for both CA and CT to inves-
tigate the effect of low and high biopore densities under each cropping 
scenario. Yet, because ploughing in CT disconnects such biopores from 
the surface once to twice a year, connections are rather made between 
drains and the plough pan (i.e. about 30 cm depth) in CT, as observed in 
field experiments (Petersen et al., 1997; Nielsen et al., 2015). Hence, 
while the density range was common to both systems, under CT, half of 
the biopores were set to start at the soil surface and the other half at 30 
cm depth. 

The mulch maximal water content and k, the parameter of the 
exponential water retention curve (Eq. (6)), were assessed as normally 
distributed from measurements by visual assessments of histograms. The 
propensity of mulch to water recharge α (Eq. (7)) was set to vary be-
tween 0.25 (Findeling et al., 2007) and 2 (Aslam et al., 2018), thereby 
representing a range for water interception between about 15 and 80 %. 

Mulch, soil and surface DT50 (as differentiated in Daisy to make it 
possible to consider surface dissipation via e.g. volatilisation) were 
assumed to be equal in both CA and CT. DT50 values along with linear 
sorption constants to organic carbon, Koc, were assigned large ranges to 
cover a broad spectrum of pesticide physical-chemical properties. The 
mass exchange rate of pesticide in the mulch (Eq. (9)) was set to vary 
between 0 and 1.5 h− 1, based on the mulch module experiment from 
Aslam et al. (2018) where the optimal value was found to be 1.2 h− 1 for 
glyphosate, which is known to be weakly sorbing to organic carbon. 

The bounds of the KM parameters for mulch (KMM) and pesticide 
(KMP) (Eq. (4)) were fixed at 0 and 350 mg C kg− 1 soil (Garnier et al., 
2003), respectively, and converted into g C cm− 3 using the soil surface 
bulk density. 

The weather data used to run Daisy simulations with a 5-year crop 
rotation was selected based on a random discrete starting year within a 
3000-year generated weather series (2.6.2.2). 

2.5.2. Monte Carlo simulations 
To cover a large range of soil hydraulic properties, the pedotransfer 

function 3 from the program Rosetta (Schaap et al., 2001) was utilized 
using the measured texture, the bulk density, and their respective un-
certainty (Table 1). A number of 5050 combinations of sand, silt and 
clay contents and bulk density values were randomly sampled and given 
to Rosetta to predict the corresponding Mualem van Genuchten pa-
rameters (Mualem, 1976; van Genuchten, 1980) and produce water 
retention and hydraulic conductivity curves. 

Using the soil hydraulic properties calculated by Rosetta and the 
parameter distribution in Table 3, 5050 Monte Carlo simulations were 
run under each cropping scenario. Parameters following a normal dis-
tribution were randomly sampled. The uniformly distributed parameters 
were pseudo-randomly sampled using the Latin hypercube sampling 
method, to ensure good coverage of the parameter spaces. The pro-
gramming language Python was used to generate the 10,100 setup files 
with the Python package PyDaisy (Gudbjerg, 2019). Each simulation 
was run for 8 years to include a warm-up period of 3 years, which 
ensured realistic initial soil water contents. About 1 % of the simulations 
crashed, due to specific combinations of soil parameter values e.g., 
combinations of low alpha values from the water retention curve and 
high n parameter values from the hydraulic conductivity curves, 
increasing the air entry point while decreasing the unsaturated hy-
draulic conductivity. The final number of simulations successful in both 
CA and CT was 4939. The parameter spaces of these simulations were 
reasonably following the original distributions. Each of the 4939 setups 
had the same values for the weather, mulch, pesticide and drain- 
connected biopore density parameters in CA as in CT. 

The load of pesticide leaving the topsoil by leaching during the full 5- 
year rotation as calculated by Daisy was considered as well as the mass 
of pesticide degraded both in the mulch, the uppermost soil layer (0–3.5 
cm), and the topsoil (0–30 cm). Both leaching and degradation amounts 
were compared to the applied dose and expressed as percentages. 

Table 3 
Distributions of mulch, pesticide and weather parameters used in uncertainty 
analysis. These parameters were common to CA and CT. The parameters follow 
Normal distributions with corresponding means and standard deviations in pa-
rentheses or uniform distributions indicated with lower and upper bounds.  

Mulch parameters 

α (− ) uniform 0.25–21 

WM (g g− 1 DM) normal 5.59 (1.10)2 

k (cm− 1) normal 0.097 (0.027)2 

Si (%) uniform 1–99 
Factor exchange (− ) uniform 0–1 
KMM (mg C kg− 1 soil) uniform 0–3501 

Drain-connected biopore density at the soil surface (m− 2) uniform 0.1–142  

Pesticide parameters uniform 
Mulch, soil and surface DT50 (days) 0.5–300 
Log10 Koc (mL g-1) 1–4 
Ep (h− 1) 0–1.5 
KMP (mg C kg− 1 soil) 0–3501 

Weather parameter: starting year (− ) uniform (discrete) 1962–4954  

1 Aslam et al. (2018), Findeling et al. (2007), Garnier et al. (2003). 2Estimated 
from measurements. 
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2.5.2.1. Numerical soil profiles and field management. Daisy simulates 
water and solute transport in soil based on the description of soil col-
umns. For each cropping scenario, a 1-dimension soil profile composed 
of five different soil layers was set up (Table 1), using the corresponding 
measurements from the topsoil (0–30 cm). A common subsoil (30–200 
cm) was added from a well-studied drained field site (Rørrendegård, 
Denmark, Nielsen et al. (2015), Table S1 in supplementary material). 
The drain depth was set at 110 cm and the drain spacing at 16 m. The 
columns were parameterized with drain-connected biopores and matrix- 
terminated biopores. The full description can be found in Table S5. In 
CT, drain-connected biopores starting at the soil surface or under the 
plough pan (30 cm depth) were described. In CA, drain-connected bio-
pores were all starting at the surface. 

Crop rotation and managements, fertilization needs, and pesticide 
application windows were defined by local agricultural consultants. A 5- 
year crop rotation winter wheat-spring barley-winter wheat-spring barley- 
winter rape was set up in Daisy for both CA and CT, with oilseed radish 
cover crops between winter wheat and spring barley. The rotation 
included an additional cover crop between the first spring barley and the 
second winter wheat in CA only. As Daisy does not have an oilseed 
radish parameterization, winter rape was used as a cover crop. 

Ploughing down to 25 cm and harrowing at 5 cm depth were 
described in the CT management, while CA management did not include 
any tillage operation. Only grains were removed at harvest, with straw 
and leaves left on the field as residues thereby forming a mulch. For the 
cover crop, everything was left on the field, simulating chemical 
termination. 

In CT, crop residues were incorporated in the topsoil later on through 
tillage, while in CA the formed mulch was left on the surface to 
decompose or become bioincorporated over time. The residues of 
terminated cover crops were added to the mulch layer. The same 
pesticide was applied once on each crop at 100 g ha− 1 (active ingre-
dient) but within different windows. The field management description 
is shown in Table S2. All field operations were conditional to soil traf-
ficability i.e., soil pF ≥ 1.7 and soil temperature > 0 ◦C at 10 cm depth, 
to avoid pesticide application on wet and frozen soil. 

2.5.2.2. Upper and lower boundary conditions. A 3000-year weather 
series generated for the Danish climate starting in 1962 and ending in 
4963 was used as upper boundary conditions. The weather series pub-
lished by Rasmussen et al. (2018) is based on 30-year long weather 
measurements taken at Copenhagen Airport between 1983 and 2013. 
The 3000-year dataset includes hourly rainfall, generated with the sto-
chastic rainfall model RainSim V3 (Burton et al., 2008), as well as daily 
air temperature, wind speed, humidity and global radiation, generated 
with the Climatic Research Unit weather generator (Kilsby et al., 2007) 
using their statistical relationship with rainfall. Rainfall follows yearly, 
monthly, daily and hourly real weather characteristics but does not 
present long-term trends like climate change. 

The lower boundary conditions in the Daisy simulations consisted of 
a 200-cm-deep aquitard with a saturated hydraulic conductivity, KS, of 
0.010 cm h− 1, and a constant pressure potential of 220 cm at its bottom, 
for a realistic setup of the investigated fields and considered subsoil 
(Styczen et al., 2004). 

2.5.3. Global sensitivity analysis (GSA) 
A GSA would require a tremendous amount of computing time with a 

highly parameterized model like Daisy (N(2 + x) simulations with N the 
number of samples and x the number of parameters, Saltelli et al., 2008). 
Meta-models were therefore developed using the outputs from the 
Monte Carlo simulations as described in Al et al. (2019). Eight param-
eters retrieved from the simulations were included in the analysis: the 
total precipitation amount over the 5-year rotation, the five water 
content values in the uppermost soil layer (0–5 cm) at the pesticide 
application time, along with the two leaf area index (LAI) values of 

spring barley at application time, as only spring barley showed a positive 
LAI during application (Table S6). In addition, the Ks and bulk density of 
the three topsoil layers were included in the set of parameters. This 
created 4 datasets consisting of 4939 simulations with 25 parameters 
and 2 pesticide loss outputs (leaching and degradation). The different 
parameters were assumed independent. The datasets were first stan-
dardized by centering and scaling each parameter. This allowed having 
homogeneous data ranges regardless of the units, with parameter means 
of 0 and standard deviations of 1. 

For pesticide degradation, a linear-regression meta-model was fitted 
on the input parameters for the prediction of degradation, and the 
standardized regression coefficients, SRCs (Saltelli et al., 2008), were 
computed based on Eq. (11): 

SRCp = wp
σxp

σy
(11)  

where wp is the weight of parameter p in the linear-regression model, σxp 
the standard deviation of the values of parameter p, and σy the standard 
deviation of the mass of pesticide degraded in the mulch and soil surface 
layer over the 5 years of simulation. 

For pesticide leaching, the linear-regression meta-models were found 
to perform badly in predicting leaching (R2 < 0.7). A modified version of 
the code from the GSA toolbox (https://github.com/gsi-lab/easyGSA) 
were used to train artificial neural networks meta-models on the pre-
viously introduced Monte Carlo simulations (2.6.2), to predict the total 
load of pesticide leaching from the topsoil. Training and validation of 
the meta-models were conducted on 90 % and 10 %, respectively, of 
each dataset originating from the Monte Carlo simulations. Sobol 
sensitivity indices were subsequently computed, including both first- 
order (Si, Eq. (12)) and total-order (STi, Eq. (13)) Sobol indices. 

Si =
V[E(Y|Xi) ]

V(Y)
(12)  

where Xi refers to a specific input parameter and Y to the output variable 
i.e., pesticide leaching from the topsoil over the 5 years of simulation. 
The numerator corresponds to the variance of the conditional expecta-
tion i.e., the expectation of Y for specific values of Xi. Sis allow to cap-
ture the full range of variation of each input parameter and its effect on 
the output variable (Saltelli et al., 2008). The higher the Si, the more 
influential the parameter, and the more crucial it is to find its accurate 
value. 

STi =
E[V(Y|X∼i) ]

V(Y)
(13)  

where X∼i refers to all input parameters but one, as it investigates the 
effect of fixing Xi. The numerator corresponds to the expectation of the 
conditional variance i.e., the variance of Y when Xi is fixed. STis capture 
the variation in the output variable induced by the interaction of each 
input parameter with the other parameters (Saltelli et al., 2008). STis 
thus determine the influence of the parameter on other parameters and 
the effect of this influence on the output variance. The lower the STi, the 
less interaction effects with other parameters, and the less effect on the 
output variance if the parameter is fixed to any value within its range of 
variability. 

Estimates of the Sobol sensitivity indices were calculated with the 
neural-network meta-models. To do so, 50,000 Monte Carlo simulations 
were run with each meta-model. The Jansen’s estimators of Sis and STis 
were used as suggested by Saltelli et al. (2010). 

3. Results and discussion 

3.1. Soil physical properties 

Soil bulk density was consistently lower in the surface layer 
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compared to the deeper layer (Fig. 2A). In CA, this difference was sig-
nificant for all sampling dates (all p-values <0.01). The highest density 
was measured at 15 cm depth in November 2018 with a mean density of 
1.65 g cm− 3 (95 % Confidence interval: 1.60, 1.70) g cm− 3. At this 
depth, the densities in CA were significantly higher than in CT, except in 
May 2019 (p-value = 0.149), where the average in CT was 1.46 (95 % 
CI: 1.40, 1.51) g cm− 3 and 1.55 (95 % CI: 1.50, 1.60) in CA. These results 
were in line with those of Heard et al. (1988), who observed a signifi-
cantly higher bulk density in the soil layer between 7.5 and 23.5 cm 
depth under no-till compared to other treatments where tillage was 
conducted, in silty soils. 

The lowest density was measured in October 2017 in the surface 
layer of the CT field, with a mean density of 1.21 (95 % CI: 1.16, 1.26) g 
cm− 3 as expected for a recently tilled field. In CT, the bulk density 
significantly increased from October 2017 to June 2018 (p-value =
0.043), which can be explained by mechanical and hydraulic stresses 
occurring during the winter due to soil weight and precipitation events 
(Bauer et al., 2015). The density decreased again in November 2018 in 
both the surface and 15-cm deep layers, although this decrease was 
borderline significant only (p-value = 0.051). 

In Fig. 2B, field capacity ranged from 25 to around 40 % in the 
surface layer, and was always significantly higher in CA than in CT (all 
p-values <0.01). At 15 cm depth, there was no difference between the 
two systems (all p-values >0.7). The strong difference in the surface 
layer was thus attributed to the increased organic matter content in CA 
in contrast to CT (Table 1). Higher field capacity and bulk density values 
implied that less air space was available in the soil surface in CA for 
immediate water infiltration. The two soil layers had significantly 
different field capacities for all sampling dates in CA (all p-values <0.01) 
with higher values in the surface layer. In CT, the two layers were only 
significantly different in June 2018 (p-value = 0.034), where the mean 
field capacities were 26.60 (95 % CI: 24.74, 28.45) % and 29.94 (95 % 
CI: 28.09, 31.79) % in the surface and the 15-cm deep layers, 
respectively. 

3.2. Mulch physical properties 

The mulch maximal water content was significantly lower for mulch 
samples collected in March compared to December (p-value <0.001) 
with mean water contents of 4.77 ± 0.17 (standard error) and 6.00 ±
0.22 g g− 1, respectively. Likewise, the residual water content was lower 
for mulch sampled in March compared to December (p-value <0.001) 
with mean values of 0.022 ± 0.002 and 0.041 ± 0.002 g g− 1, respec-
tively. With a period of 4 months between the two sampling campaigns, 
the mulch residues were subjected to weathering effects and biological 
decomposition which strongly affected the structure of the residues by 
reducing the particle size. In their study investigating the water storage 
characteristics of different plant tissues, Iqbal et al. (2013) demonstrated 
that the water retention capacity of plant residues was reduced with 
lower particle size of the mulch residues. In addition, they reported that 
the maximal water content increased with a higher degree of decom-
position, which could be explained by an enhanced porosity of the plant 
material due to the increased presence of cavities on their cell walls. 
Although their measurements relate to the water retention of plant 
particles, their results for residual water contents for undegraded wheat 
straw were similar to those measured in the present study for mulch 
retention. Their maximal water contents were considerably smaller 
(2.33 ± 0.46 g g− 1 on average for wheat) however. This could be 
anticipated as an in-between particles retention of water is expected in a 
mulch where particles are superposed. 

The mulch bulk density measurements in the present study had 
substantial variation across samples and over time. However, the dif-
ference between the two dates with mean densities of 16.11 ± 2.22 and 
14.01 ± 2.22 g L− 1, respectively, was not significant (p-value = 0.36). 

Fitting the mulch water retention data to an exponential model 
resulted in the determination of a mulch water retention curve (Fig. 2C). 

Fig. 2. A: Measured soil dry bulk density. B: Field capacity at four time points 
between 2017 and 2019 under the two cropping systems conservation agri-
culture (CA, green) and conventional tillage (CT, blue), with 95 % confidence 
intervals. The unbroken lines correspond to samples taken at the soil surface 
(0–3.5 cm), and the dotted lines to samples taken at a soil depth of 15 cm. C: 
Measured mulch water retention capacity (dots) and average modelled expo-
nential retention curve (line). The different colours represent 
different replicates. 

J. Vuaille et al.                                                                                                                                                                                                                                  



Science of the Total Environment 929 (2024) 172559

10

The drying process of the mulch up to pF 1 was reasonably well 
described by the exponential model, while water content for larger pF 
might have been underestimated. Three replicates had a particularly 
high water content near saturation (at pF 0) compared to the modelled 
water content. This could be due to the variation in the mulch packing in 
each ring cell as well as the measurement instability of the tensiometer 
shaft. The average value of the k parameter was estimated to be 0.097 ±
0.01 cm− 1. 

3.3. Testing of the mulch module 

Using published experimental data, 8 mulch and pesticide parame-
ters along with 6 soil parameters could be estimated based on the results 
for the HI-R regime (Table 2, Table S3 and Fig. S1). The RMSE for soil 
water content was 0.02 cm cm− 3 (Table S4). For mulch water, s-meto-
lachlor and glyphosate contents the RMSE were 0.254 g g− 1, 0.013 g 
m− 2 and 0.017 g m− 2, respectively. For s-metolachlor content in soil, the 
RMSE was 0.011 g m− 2 (Table S4). 

Using the fitted parameters, Daisy satisfactorily simulated water and 
pesticide dynamics in mulch, as well as pesticide content in soil under 
the HI-R regime (Fig. 3). This confirmed the suitability of the parameter 
ranges (Table 2). Under the LF-R regime, the simulated mulch water 
content was approximately 4 times lower than under HI-R. These 
simulated water contents appeared greatly underestimated when 
compared to measurements (Fig. 3, RMSE of 0.882 g g− 1 in Table S4). 
This could first be explained by the description of the mulch as one layer. 
With the current description, the amount of water not intercepted by the 
mulch reaches the soil; with a two-layer structure such as in PASTIS, part 
of this water would be first intercepted by the lower part of the mulch, 
leading to an overall greater interception and mulch water content. The 
values for the water retention curve parameter k and the mulch pro-
pensity to water recharge α could also have been better estimated to fit 
the observations under LF-R. The measurements under HI-R used for 
inverse modelling were taken before each irrigation event. Thus, the 
water content of the mulch right after irrigations was unknown, making 
the full range of water content values uncaptured by the measurements 
and especially the water contents of the mulch under LF-R, thereby 
hampering the quality of the fitted values of k and α. Setting k at a value 
of 0.023 cm− 1 i.e., 5 times lower than the fitted value, showed that a 
satisfactory mulch water content could be reached under LF-R (RMSE of 
0.290 g g− 1) while keeping a satisfactory description of pesticide content 
in mulch and soil (Fig. S3, RMSEs of 0.290 g g− 1 for water content, 0.009 
and 0.017 g m− 2 for s-metolachlor and glyphosate contents, and 0.013 g 
m− 2 for s-metolachlor content in soil). 

Daisy also overestimated mulch decomposition compared to the 
measurements (Fig. S2) for both rainfall regimes, although the lack of 
observation points made a thorough comparison with measurements 
difficult. 

The fitted value of the mass exchange parameter Ep was greater for 
glyphosate (0.8 h− 1) than for s-metolachlor (0.4 h− 1). This was in line 
with a low sorption capacity of glyphosate to organic matter and higher 
measured desorption rates (Aslam et al., 2018; Rampoldi et al., 2011). 
The estimated DT50 values were very different from that of Aslam et al. 
(2018) (calibrated values) due to differences in the mulch setups 
including the common DT50 values of pesticides in mulch and soil and 
the one-layer structure in the present study. 

These results show that the more generalized description of the 
mulch module and the parameter ranges taken from the literature and 
from our measurements could reproduce pesticide dynamics in mulch 
and soil. However, for water dynamics, while the module performed 
well for the measurements it was fitted on (HI-R regime), the mulch 
water content was poorly described when tested under another set of 
observations (LF-R regime). Improvements are therefore needed; this 
requires more precise observation data. Carrying a sensitivity analysis of 
the newly described mulch module can help prioritize the measurements 
to conduct. 

3.4. Uncertainty analyses 

3.4.1. Water balance 
The yearly average actual transpiration in the CA and CT scenarios 

were very close, 185.2 ± 0.1 (standard error) and 184.2 ± 0.2 mm, 
respectively (Table 4), while the soil evaporation was about 26 % lower 
in CA due to the presence of mulch. This led to both a greater matrix and 
biopore net infiltration under CA and a higher percolation rate from the 
topsoil to the subsoil (Table 4), as also reported by Moody et al. (1963) 
and in the modelling study of Lammoglia et al. (2017) as effects of 
mulching. 

Although the biopore infiltration was nearly twice as high under CA, 
the drain flow induced by drain-connected biopores was not higher. 
While the higher biopore infiltration in CA could be explained by lower 
hydraulic conductivities in the topsoil (Fig. S4E, Fig. S5E and Table S6) 
and a two-fold higher density of biopores starting at the surface, the 
similar drain flow showed that a larger share of water infiltrated via 

Fig. 3. Water and pesticide dynamics in mulch and soil simulated with Daisy 
mulch module (line) compared to measurements digitized from Aslam et al. 
(2018) (red cross). A: Contents of water, s-metolachlor and glyphosate in mulch 
for the two irrigation regimes high and infrequent (HI-R) and low and frequent 
(LF-R), respectively; B: Contents of s-metolachlor in the 0–5 cm soil layer for the 
two irrigation regimes. 
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Table 4 
Yearly mean and standard error for actual transpiration, soil evaporation, drainage, and infiltration from the topsoil and percolation from the topsoil and bottom of the 
soil profile in the CA and CT scenarios. Drainage from drain-connected biopores only. Total yearly precipitation was 675.48 ± 0.76 mm.   

Pot.evap. Transp. 
(mm) 

Actual transp. (mm) Soil evap. 
(mm) 

Drain flow 
(mm) 

Biopore 
infiltration 

(mm) 

Matrix 
infiltration 

(mm) 

Percolation (mm) 

from topsoil from 200 cm depth 

CA 478.5 ± 0.1 185.2 ± 0.1 105.9 ± 0.2 57.3 ± 0.4 20.1 ± 0.2 450.3 ± 0.7 352.6 ± 0.7 137.3 ± 0.5 
CT 478.3 ± 0.1 184.2 ± 0.2 143.8 ± 0.1 60.4 ± 0.4 12.4 ± 0.2 431.8 ± 0.6 323.5 ± 0.7 119.1 ± 0.5  

Fig. 4. A: frequency distribution of the simulated pesticide load leaching from the topsoil (0–30 cm) directly to the drains and to the subsoil (> 30 cm). B: frequency 
distribution of the simulated pesticide degradation in the mulch and soil surface layer (3.5 cm depth). The simulated data are given as percentage of the applied 
pesticide dose and log10 transformed. Null values were replaced by 10− 6. C: Total-order indices (STis, unitless) for the 25 parameters investigated as predictors of 
pesticide leaching to drains. D: Standardized regression coefficients (SRCs, unitless) for the 25 parameters investigated as predictors of pesticide degradation. Ks1, 
Ks2 and Ks3 refer to the predicted Ks in the corresponding soil layers. BD refers to bulk density. soil_WC_SB1, soil_WC_SB2, soil_WC_WW1, soil_WC_WW2 and 
soil_WC_WR refer to the soil water content (average from 0 to 5 cm depth) on the pesticide application day during the first or second spring barley, winter wheat and 
winter rape cultivation, respectively. 
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matrix-terminating biopores in CA, leading to more percolation from the 
bottom of the numerical soil profile (137.3 ± 0.5 mm in CA against 
119.1 ± 0.5 mm in CT). 

3.4.2. Pesticide leaching and degradation 
The distributions of the pesticide load leaching from the topsoil or 

directly from the surface to the drains were very similar for the two 
scenarios, with only a slightly lower mean in CA of 13.9 ± 0.3 % 
(standard error, % of the applied dose) compared to 14.9 ± 0.3 % in CT 
(Fig. 4A). Pesticide degradation in the mulch and uppermost 3.5-cm soil 
layer was significantly higher in CA than under CT, with mean degra-
dations of 49.7 ± 0.3 and 35.2 ± 0.3 % of the applied dose, respectively 
(Fig. 4B). When considering the whole ploughing layer (0–25 cm) the 
degradation was slightly higher in CT (Fig. S6) with mean degradations 
of 72.2 ± 0.3 compared to 66.9 ± 0.3 % in CA. The difference was due to 
the interception of some pesticides in the upper part of the mulch, where 
degradation is assumed negligible. These results show that mechanical 
incorporation of residues in the ploughing layer in CT promoted the 
biodegradation of pesticides, but that in CA, this could be counter-
balanced by interception in the upper part of the mulch where degra-
dation does not occur. Interception in mulch could also be the reason for 
the slightly higher mean leaching under CT. 

Pesticide degradation in the soil might be overestimated as Daisy 
does not account for observed negative effect of sorption on degradation 
(Alletto et al., 2010; Fomsgaard, 2004). As a potential improvement of 
the model, degradation could be reduced when pesticides are sorbed to 
e.g. clay as compared to pesticides in the water phase. 

3.5. Sensitivity analyses 

The distribution in terms of mean and standard error of all variables 
used in the sensitivity analysis are provided in Table S6. 

For pesticide leaching from the topsoil, the meta-models showed R2 

on the test sets ranging from 0.98 to 0.99 and from 0.65 to 0.71 for 
pesticide degradation in the mulch and surface layer. The two most 
influential parameters of leaching for both CA and CT, as estimated by 
these meta-models and the calculated STis (Fig. 4C), were the DT50 and 
the linear sorption coefficient to organic carbon Koc. Pesticide leaching 
in CT was also highly sensitive to the Michaëlis-Menten constant for 
pesticide degradation by soil microbes KMP. In CA, pesticide leaching 
was generally found sensitive to more parameters including both 
pesticide, mulch and soil parameters (Fig. 4C). The soil bulk density was 
of great influence as well as the KS, highlighting the necessity to care-
fully measure these variables. The density of drain-connected biopores, 
the mulch saturation index Si and the Michaëlis-Menten constants for 
pesticide and mulch degradation were also influential although to a 
lower extent. The importance of bulk density and Ks, and in particular in 
the soil layer 3.5–25 cm, was most likely related to their potential to 
increase or reduce the occurrence of biopore flow by soil saturation, as 
this layer had on average a significantly higher density than the surface 
layer (Fig. 2) and a lower Ks (Fig. S4 and Table S6). In CT, the sensitivity 
index of Ks was close to 0 indicating low influence of this parameter. 

These results confirm the findings of the review from Dubus et al. 
(2003), in that predictions of pesticide leaching have been reported 
sensitive to sorption and degradation parameters but also hydrological 
parameters such as KS. In the review of Brown and van Beinum (2009), 
the measured seasonal loss of pesticide to drains was significantly 
related to the pesticide sorption capacity to soil and soil DT50. 

The parameter DT50 was also greatly influential for pesticide 
degradation (Fig. 4D), but contrary to pesticide leaching, degradation 
appeared equally sensitive to the parameter Koc. 

Pesticide degradation in soil or mulch depends on both the amount of 
pesticide transferred from the mulch to the soil and the degradation rate. 
The former depends on the water content at which wash-off can occur i. 
e., Si, and the latter on the microbial factor fb, which in turn depends on 
the KMP factor, as it controls the increase in fb. Si was shown to influence 

degradation positively in mulch and soil, most likely by hampering 
wash-off (Fig. 4D), while KMP had a negative effect by slowing down the 
degradation rate of pesticide. The sensitivity analysis of Aslam et al. 
(2018), performed by following the “one-factor-at-a-time” method, also 
showed that both mulch degradation and wash-off were highly sensitive 
to the parameter Si. 

The STi of KMM was close to 0 for leaching whereas it was the fourth 
most influential parameter for degradation in CA. This was because the 
SMB2 pool increases with mulch degradation, which in turns increases 
pesticide degradation. 

With very low STi values compared to the other parameters, the 
hydraulic mulch parameters introduced in the present work, namely the 
mulch propensity to water recharge, α, the water-exchange factor be-
tween mulch and soil, fe, the water retention curve parameter, k, and the 
maximal water content, appeared to have little influence on pesticide 
leaching. Their value close to 0 implied that they could be fixed to the 
measured average values or the values found in the literature without 
affecting leaching. These parameters were also found to have little effect 
on pesticide degradation (Fig. 4D), which highlighted the greater 
importance of the parameter Si, defining the lowest water content at 
which wash-off starts to occur, over the parameters affecting the amount 
of wash-off such as Ep, α and k, as also seen during the testing of the 
mulch module in Section 3.3. Similarly, the bulk density and KS were 
found more influential than the density of drain-connected biopores for 
leaching. This meant that the triggering of biopore flow was more 
important than the actual density of biopores. This has previously been 
shown by Holbak et al. (2022) who used inverse modelling of observa-
tions of water flow and pesticide concentrations in drains to estimate the 
density of drain-connected biopores. The resulting estimate had a con-
fidence interval range from 0.004 to 2507 m− 2. 

Total precipitation over the 5-year rotation appeared to influence 
leaching but to a lower extent than pesticide and soil parameters, while 
it was nearly non-influential for degradation. In their modelling study 
with the MACRO model, Nolan et al. (2008) showed that cumulative 
rainfall influenced leaching to drains, in particular for a moderately 
mobile and moderately persistent pesticide. But their study highlighted 
that the timing of rainfall events and their intensity in relation to the day 
of application were of greater influence. 

When comparing the STis to the first-order indices (Fig. S7), the 
parameters Si, KMM and bulk density appeared to have a small interac-
tion with other parameters. These interactions could partly explain the 
unsuitability of the linear regression models for predicting pesticide 
leaching, compared to neural networks. 

4. Conclusion 

Under the assumptions of instantaneous pesticide sorption, co- 
metabolic degradation, and input parameter distributions, the uncer-
tainty analysis with Monte Carlo simulations resulted in close distribu-
tions of leached loads of pesticide from the topsoil between the CA and 
CT scenarios – with a slightly lower mean in CA than in CT –, although 
the density of drain-connected biopores starting at the surface was two- 
fold higher in CA than in CT. The degradation of pesticide showed 
vertical heterogeneity: while degradation in the mulch and soil surface 
layers was found significantly higher in CA, CT was characterized with a 
greater degradation when considering the whole ploughing layer due to 
mulch incorporation by tillage. The quantity not degraded in CA 
compared to CT was found to be retained in the mulch layer not in 
contact with the soil i.e., where degradation is assumed negligible. 

The sensitivity analysis identified 7 parameters out of 25 as the most 
critical for pesticide leaching and degradation given the input parameter 
distributions. It showed that the mulch hydraulic parameters could be 
fixed to any value within their distribution without influencing pesticide 
degradation and leaching. In contrast, the microbial factors of mulch 
and pesticide degradation, mulch saturation index, as well as soil hy-
draulic properties need to be accurately estimated in order to improve 
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the accuracy and precision of estimated pesticide leaching and degra-
dation distributions. This raised the need for conducting further exper-
imental studies to better describe degradation in both mulch and soil 
and thereby improve the estimated uncertainty in pesticide leaching 
modelling. In particular, field and laboratory studies would allow to 
follow the degradation of mulch as affected by different pedoclimatic 
conditions but also pesticide fate as affected by the residue type and 
decomposition of cover and main crops. 

A better estimation of the 7 identified parameters may modify the 
conclusions regarding the distribution of leached loads in CA and CT. In 
addition, as matrix-terminating biopores played an important role in 
water infiltration, their contribution as well as that of the subsoil in 
general to water and pesticide transport to drains should be considered 
in future works. 
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