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Abstract

This research paper introduces a novel approach by combining a Backpropagation (BP)

neural network with a non-angular and non-radial directional distance function to construct a

BPNN-DDF model. This innovative model evaluates, decomposes, and analyzes China’s

agricultural sector’s carbon emission rate across nine key subregions between 2010 and

2021. The key findings of this study are that China’s agricultural carbon emission rate is

decreasing, primarily due to technological advancements rather than technological effi-

ciency. Subregions with robust economies and stable climates exhibit higher carbon emis-

sion efficiency, whereas those with underdeveloped economies, low agricultural

technology, and volatile climates show relatively lower efficiency. The Dagum Gini coeffi-

cient analysis reveals a widening disparity in carbon emission rates among agricultural sub-

regions, escalating from 0.174 in 2010 to 0.425 in 2021, indicating a growing gap between

subregions that demands immediate attention. The kernel density distribution demonstrates

an overall upward trend in China’s carbon emission efficiency but also highlights an increas-

ing divergence among subregions, particularly between the South China Area, the Huang-

Huai-Hai Plain, and other regions. Therefore, this paper posits that strategies focusing on

technological progress, sustainable agricultural development, regional development initia-

tives, and addressing inter-subregional imbalances will be crucial pathways for China’s

future low-carbon agricultural development.

Introduction

Global food security is intricately tied to the sustainability and efficiency of agricultural green

production. While driving economic prosperity, these practices contribute significantly to

greenhouse gas (GHG) emissions—a staggering 23% of the global annual total [1]. Methane

and nitrous oxide, primarily emitted through agricultural activities such as combustion, fertil-

izer use, and pesticide application, exacerbate climate change and threaten ecosystems [2],

highlighting the critical need for a transformation towards low-carbon agriculture.

In this context, China emerges as a pivotal case study due to its rapid agricultural growth

trajectory since the inception of economic reforms, with the total output value growing at an

average annual rate of 12.63% in gross agricultural output value. It should be noted that the
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current unbalanced and insufficient development of Chinese agriculture is still prominent [3,

4], especially the sizeable regional gap in the green and low-carbon development of agriculture.

This slows down the pace of global environmental governance and leads to persistent inequi-

ties in food security and resource utilization. Therefore, effective enhancement and balanced

development of agricultural carbon emission efficiency can minimize environmental pollution

and avoid overuse of resources, which is crucial for promoting sustainable agricultural devel-

opment and realizing economic green transformation. However, the heterogeneous character-

istics of inter-regional agricultural farming practices, soil conditions, climatic conditions, and

resource endowments lead to spatial differences in carbon emission efficiencies across regions.

Recognizing and studying such differences is crucial to formulating agricultural measures

according to local conditions and giving full play to the practical benefits of green and low-car-

bon agricultural development. With this objective, our study innovatively adopts a

BPNN-DDF model, merging artificial neural networks (BPNN) with a non-angular, non-

radial directional distance function (DDF) under the umbrella of the general technology fron-

tier concept. This advanced analytical tool enables a comprehensive evaluation, decomposi-

tion, and spatial analysis of carbon emission rate across nine key agricultural subregions in

China from 2010 to 2021.

Given China’s dual role as the world’s most populous country and a significant agricultural

producer, its agricultural zoning has been divided into nine regions by the Comprehensive

Plan for Agricultural Zoning in China issued by the China Agricultural Zoning Committee.

Northeast Plain (Heilongjiang, Jilin, Liaoning); Yunnan-Guizhou Plateau (Yunnan, Guangxi,

Guizhou); Arid and Semi-Arid Regions of the North (Inner Mongolia, Xinjiang, Gansu, Ning-

xia, Qinghai, Tibet, Gansu, Ningxia); Arid and Semi-Arid Regions of the South (Inner Mongo-

lia, Xinjiang, Gansu, Ningxia); Arid and Semi-Arid Regions of the North (Inner Mongolia,

Xinjiang, Gansu, Ningxia), South China (Guangdong, Fujian, Hainan); Sichuan Basin and

neighboring areas (Sichuan, Chongqing); Middle and Lower Yangtze River Plain (Jiangsu,

Jiangxi, Hunan, Hubei, Anhui, Zhejiang, Shanghai); Qinghai-Tibet Plateau (Tibet, Yellow

Huaihai Plain (Tianjin, Beijing, Shandong, Henan, Hebei). Focusing on China and exploring

the characteristics of agricultural carbon emissions in these nine agricultural regions is strate-

gically significant. Analyzing each agricultural subregion in detail makes it possible to reveal

inter-regional differences and identify key areas for precise policy interventions. Therefore,

the study period is selected from 2010 to 2021, when China’s economy and agriculture are

undergoing a rapid transformation, to analyze the trends and dynamics of the carbon intensity

of different agricultural regions in China.

This study aims to expose the geographical imbalance in the efficiency of agricultural car-

bon emissions and provide scientific support for promoting green and low-carbon agricultural

development models and optimizing regional resource allocation. The core objective of this

study is to enhance agriculture’s sustainability benefits and drive agriculture’s transformation

towards eco-friendliness and low-carbonization to accelerate the realization of the overall sus-

tainable development of agriculture. Through this exploration, we will provide data support

and strategic guidance for policymakers and contribute Chinese solutions to global agricul-

tural sustainability practices.

Literature review

Agricultural carbon emissions, embodying the discharge of greenhouse gases from farming

activities, necessitate meticulous measurement and evaluation to inform sustainable strategies.

As a pivotal indicator, the agricultural carbon emission rate underscores the relationship

between emissions and agriculture productivity, guiding the quest for eco-friendly growth [5].
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A comprehensive indicator system further bolsters this pursuit, enabling in-depth assessments

of green agricultural development [6, 7].

In the academic realm, research on agricultural carbon emissions has witnessed a surge,

encompassing a diverse array of aspects, including analysis of the current state of agricultural

carbon emissions [8, 9], carbon emission rate measurement [10, 11], identification of influenc-

ing factors [12], and exploration of emission reduction pathways [13]. While numerous studies

focus on the direct measurement and analysis of agricultural carbon emissions, often incorpo-

rating economic indicators as auxiliary parameters, assessing the agricultural carbon emission

rate transcends this limitation. It innovatively integrates non-desired outputs–carbon emis-

sions–into the traditional agricultural productivity assessment framework, an adjustment that

enriches the measurement criteria and significantly enhances the research findings’ realistic

guiding value. Consequently, an increasing number of scholars have researched the agricul-

tural carbon emission rate, primarily focusing on the following three aspects.

Firstly, the measurement method and characterization of the current agricultural carbon

emission rate situation. Huang and Gao (2022) employed the DEA model to measure China’s

agricultural carbon emission efficiency. They found that China’s agricultural carbon emission

efficiency has improved during the survey period but remains low, with marked inter-provin-

cial disparities. However, most regions exhibit a state of improvement [14]. Additionally,

research scholars further explored its spatial effect, revealing convergence and evident spatial

autocorrelation in agricultural carbon emission efficiency among provinces [14, 15]. Secondly,

the mechanism of influence on the agricultural carbon emission rate is explored. Initial studies

primarily focused on the decomposition of the agricultural carbon emission rate, revealing

that its growth stems mainly from technological progress rather than efficiency improvement,

albeit with slight differences across different regions [15, 16]. Subsequently, the focus shifted

toward the exploration of factors influencing agricultural carbon emission efficiency, uncover-

ing its susceptibility to various factors, such as mechanical inputs [17], labor migration [18],

agricultural technological progress [19], and climatic environment [20, 21], among others.

Thirdly, analyzing the spatio-temporal dynamics of the agricultural carbon emission rate has

been a focal point. Researchers have explored regional differences [22, 23] and spatial and tem-

poral changes [24], considering the differences in agricultural products, agricultural develop-

ment, and regional economic conditions. For example, Zheng et al. (2024) integrated various

approaches to analyzing China’s spatiotemporal dynamics of agricultural carbon emissions

efficiency, demonstrating its evolution across different geographical locations over time [24].

The results of the existing research on agricultural carbon emission rate not only lay an

essential theoretical and methodological foundation for this study but also highlight the short-

comings of the research on agricultural carbon emission rate. In the relevant agricultural car-

bon emission rate studies, parametric and non-parametric methods are mainly used to

measure agricultural carbon emission productivity. Among them, non-parametric models

have been widely used by scholars in agricultural carbon emission evaluation because they do

not require pre-establishment of functional forms and a priori conditions (Molinos-Senante

et al., 2016) [25] and can effectively avoid the subjectivity of parametric weighting (Dong et al.,

2017) [26]. In the previous studies on agricultural carbon emission rate, most of them used the

traditional data envelopment analysis (DEA) model or SBM-DEA model as the analytical

method, mainly ignoring the effects of regional resource differences and negative outputs.

They could not identify the contribution of different elements of inputs and outputs to the

agricultural carbon emission rate. Therefore, based on the non-angle and non-radial DDF

model proposed by Zhou et al. (2012) [27] and Shao et al. (2022) [28], this study innovatively

introduces the BP neural network. It constructs the BPNN-DDF model to measure the carbon

emission rate of China’s nine major agricultural subregions. Building upon this existing
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research, this paper makes several crucial advancements and refinements in the following four

areas:

(1) We construct the BPNN-DDF efficiency measurement model by employing the non-angu-

lar and non-radial Directional Distance Function (DDF) of the overall technological frontier

and integrating it with the Backpropagation Neural Network (BPNN). This approach also

incorporates the Luenberger productivity index to address biases in setting the technological

frontier and biased efficiency measurements. As a result, the accuracy of measuring China’s

agricultural carbon emission rate across its 31 provinces from 2010 to 2021 is improved,

with a focus on identifying the factors driving carbon emission efficiency.

(2) The meticulous decomposition of agricultural carbon emission efficiency in China’s nine

subregions from the perspectives of input and output factors allows for precisely measuring

the actual impact of changes in inputs and outputs on the agricultural carbon emission rate.

(3) Using the constructed BPNN-DDF efficiency measurement model and Dagum’s produc-

tivity indicator, we analyze the main factors contributing to enhancing agricultural carbon

emission efficiency. This analysis provides valuable insights into the key drivers of effi-

ciency improvements.

(4) Employing the Dagum Gini coefficient and kernel density estimation, we examine the spa-

tial diversity of carbon emission efficiency within the nine subregions. Specifically, we focus

on the evolving trends of disparities within and between subregions in the agricultural sec-

tor. This in-depth analysis will offer invaluable guidance for developing region-specific

green growth strategies tailored to each subregion’s unique circumstances and challenges.

Research methodology

Measurement and decomposition model of agricultural carbon emission

rate in China

Measurement model of agricultural carbon emission rate. Assume that each DMU

receives N varieties of inputs and generates M varieties of anticipated output along with I vari-

eties of unexpected output b = (b1,b2,� � �,bI). At each period t = 1,2,� � �,T, the output-input vec-

tor is represented by ðyt
k; b

t
k; x

t
kÞ. Referring to Zhou et al. (2012) [27], the subsequent

explanation is regarded as applicable to DDFs that are not angular or radial, specifically about

unforeseen results. The expression of the overall technology-based DDF, which is not angular

or radial, can be achieved within the limitations of energy and the environment.

D0
�!
ðx; y; bjgÞ ¼ supfwTb : ðy; b; xÞ þ g � diagðbÞ 2 P0ðxÞg ð1Þ

w ¼ ðwy
m;w

b
i ;w

x
nÞ

T
is a vector of weights related to the quantities of output and input factors; g

is a vector of directions, indicating that the desired directions of efficiency improvement are

desired output expansion, undesired output, and input reduction; b ¼ ðbmy; bib; bnxÞ
T
� 0 is a

Scaling Factor, whose values are the possible proportions of desired output expansion, unde-

sired output, and input reduction. The DDF shown in Eq (1) measures the level of inefficiency

of each input and output factor relative to the production frontier. Then, the DMU’s overall

inefficiency level is measured using specific weights. The larger the value of the DDF, the lower

the efficiency of its inputs and outputs, and vice versa, the higher the efficiency of its inputs

and outputs. If the DDF value is 0, it is above the production frontier. The DDF for period t

based on the overall technology frontier, i.e., the current agricultural carbon emission rate
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D0
�!
ðxt; yt; btjgtÞ can be obtained by solving the following linear programming model:

D0
�!
ðxt; yt; btjgtÞ ¼ max

maxwy
mb

0;;t
my þ wb

i b
0;t
ib þ wx

nb
0;t
nx

s:t:
XK

k¼1

zt
ky

t
km � yt

m þ b
0;t
myg

t
my; 8m;

XK

k¼1

zt
kb

t
ki ¼ bt

i � b
0;t
ib gt

ib; 8i;

XK

k¼1

zt
kx

t
kn � xt

n � b
0;t
nx g

t
nx; 8n; zt

k � 0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

; t ¼ 1; � � � ;T

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

ð2Þ

BPNN-DDF model. Specifically for the agricultural carbon emission efficiency to be measured

in this paper, this paper considers four input factors such as farmland inputs (F), labor inputs (L),

machinery inputs (M), and resource inputs (R) (including resources such as fertilizers, diesel fuel,

and films) in 31 provinces in China, the desired output Y (agricultural GDP), and the undesired out-

put B (agricultural carbon emissions), at which time X ¼ ðF; L;M;RÞ;Y ¼ ðAGDPÞ;B ¼ ðCO2Þ.

Referring to Zhou et al. (2012) [27] and Zhang et al. (2013) [29] to set the direction vector

g ¼ ðY; � B; � F; � L; � M; � RÞ. To better reflect the differences in local inputs and outputs, unlike

the proposal of Shao et al. (2022) [28], which assigns a weight of 1/3 to desired outputs, non-desired

outputs, and input factors respectively, and distributes the weights equally according to the number

of types of desired outputs, non-desired outputs, and input factors, the weight coefficients of each

factor are calculated using BP neural network (BPNN). The BPNN can automatically determine the

weights based on the input and output data, which makes the calculated value of agricultural carbon

emission efficiency more accurate.

Based on the Luenberger productivity indicator form, the Agricultural Carbon Emission

Efficiency (ACE) in period t+1 is defined as:

ACE ¼ D0
�!
ðxt; yt; btjgtÞ � D0

�!
ðxtþ1; ytþ1; btþ1jgtþ1Þ ð3Þ

Since DDF measures the distance of DMUs from the production frontier (i.e., their inefficiency),

ACE> 0 implies that the rate of agricultural carbon emissions has improved, and vice versa.

Decomposition of carbon emission efficiency in agriculture. According to the decom-

position idea of the DEA efficiency measurement model proposed by Fujii et al. (2014) [30].

The decomposition of agricultural carbon emission efficiency can be obtained as a technical

change indicator (TC) and efficiency change indicator (EC), along with the decomposition

results considering input-output factors.

TC ¼ ½D0
�!
ðxt; yt; btjgtÞ � Dt�!ðxt; yt; btjgtÞ�

� ½D0
�!
ðxtþ1; ytþ1; btþ1jgtþ1Þ � Dtþ1

��!
ðxtþ1; ytþ1; btþ1jgtþ1Þ�

ð4Þ

EC ¼ Dt�!ðxt; yt; btjgtÞ � Dtþ1
��!
ðxtþ1; ytþ1; btþ1jgtþ1Þ ð5Þ

ACE ¼ ðwYb
0;t
Y þ wBb

0;t
B þ wXb

0;t
X Þ � ðwYb

0;tþ1

Y þ wBb
0;tþ1

B þ wXb
0;tþ1

X Þ

¼ ðwYb
0;t
Y � wYb

0;tþ1

Y Þ þ ðwBb
0;t
B � wBb

0;tþ1

B Þ þ ðwXb
0;t
X � wXb

0;tþ1

X Þ

¼ ACEY þ ACEB þ ACEX

ð6Þ
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Spatial heterogeneity analysis of agricultural carbon emission rates

Dagum Gini coefficient. The Dagum Gini coefficient, a refinement of the traditional

Gini index, offers a sophisticated statistical tool for assessing inequality in income or wealth

and, as applied in this study, in carbon emission rates across different regions. Developed by

Angelino DAGUM, this method enhances our understanding of disparity by decomposing the

total inequality into three fundamental components: intra-subregional differences, inter-sub-

regional differences, and a term accounting for the unevenness or ’density’ within those

groups, known as hyper dispersion.

Intra-subregional differences. This component captures the heterogeneity of the nine agri-

cultural regions. It measures how evenly or unevenly carbon emissions are distributed among

provinces within the same region, reflecting variations due to local factors such as technology

adoption, farming practices, and resource endowments.

Inter-subregional differences. This section focuses on regional disparities and quantifies how

much the average carbon emission rates vary from one agricultural region to another. It high-

lights regional disparities influenced by broader economic, policy, and environmental differ-

ences across China.

Hyper dispersion density. A unique feature of the Dagum Gini coefficient, this term

accounts for the overall spread or concentration of the distribution beyond what would be

expected from a simple comparison of averages. It captures the degree of unevenness in the

dataset, indicating whether the distribution is tightly clustered or widely dispersed, which

could relate to outliers or extraordinarily high or low emission rates.

By employing this methodology, the study delves deeply into the multifaceted nature of car-

bon emission inequalities in China’s agriculture, enabling policymakers to discern whether

mitigation efforts should target specific provinces with unusually high emissions (intra-subre-

gional), address broad regional discrepancies (inter-subregional), or consider the influence of

outliers and extreme values (hyper dispersion). Consequently, the insights garnered facilitate

the formulation of tailored policies and strategies to foster green growth and promote sustain-

able agricultural practices across China’s diverse agricultural. According to Li et al. (2022)

[31], the calculation formula is shown below:

G ¼
Xh

j¼1

Xh

d¼1

Xnj

i¼1

Xnd

r¼1

jACEji � ACEdrj=2n2�u ð7Þ

Gw ¼
Xm

j¼1

Gijpjsj ð8Þ

Gnb ¼
Xm

j¼2

Xj� 1

d¼1

Gjdðpjsd þ pdsjÞDjd ð9Þ

Gt ¼
Xm

j¼2

Xj� 1

d¼1

Gjdðpjsd þ pdsjÞð1� DjdÞ ð10Þ

Where: h denotes the number of agricultural subregions; nj(nd) denotes the number of prov-

inces and municipalities in the subregion j(d); ACEji(ACEdr) denotes the agricultural carbon

emission rate of the provinces and municipalities in the subregion j(d); n denotes the number

of provinces and municipalities; �u denotes the mean value of the agricultural carbon emission

rate of each province in China; Gjj denotes the Gini coefficient of the subregion j; Gjd denotes
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the Gini coefficient between the subregion j and the subregion d; pj = nj/n, sj ¼ njuj=n�u: Djd

measures the mutual influence of the agricultural carbon emission rate between the subregion

j and the subregion d.

Kernel Density Estimation (KDE). Kernel Density Estimation (KDE) is a technique for

estimating the probability density function without making assumptions about its parameters.

It estimates density by comparing distances between data points and using a smooth kernel

function. Utilizing Kernel Density Analysis aids in elucidating the fluctuating pattern of car-

bon emission rates in China’s nine primary agricultural sub-regions, suggesting tailored

approaches to enhance the carbon emission rate and foster agriculture’s environmentally

friendly and sustainable growth. Its functional form is expressed as:

f ðxÞ ¼
1

nh

Xn

i¼1

k
xi � �x

h

� �

ð11Þ

In the above equation, f(x) is the density function, is the kernel function, h is the bandwidth,

and n is the number of observations (i.e., the total number of provinces). i denotes individual

provinces, xi denotes independently and identically distributed observations, and is the mean.

Since bandwidth (also known as width) is a critical parameter in the KDE, it determines the

estimates’ smoothing degree. A bandwidth that is too small will result in an estimate that is too

noisy or sharp, capturing too much of the sample specificity and ignoring the overall features;

a bandwidth that is too large will make the estimate too smooth and may mask some essential

features in the data. Determining the appropriate bandwidth is an essential issue in KDE.

Commonly used methods include Silverman’s Rule of Thumb, cross-validation, interpolation,

and adaptive kernel density estimation. Usually, a specific quantitative relationship between

the sample size and the bandwidth needs to be satisfied, i.e., h is a function of n and the expres-

sion of its optimal solution is:

h ¼
4

3n

� �1
5

� 1:06n� 1
5 ð12Þ

In this paper, the Gaussian kernel is chosen for correlation analysis, and its functional

expression form is:

kðxÞ ¼
1
ffiffiffiffiffiffi
2p
p exp �

x2

2

� �

ð13Þ

Because the kernel function equation is complicated to determine precisely, nonparametric

estimation often draws on graphical comparisons to show changes in the distribution of ran-

dom variables clearly. In particular, the center of the density function shifts from side to side

over time to reflect an increase or decrease in the level of the subject, with a shift to the right

indicating an increase in level and a shift to the left indicating a decrease in level. There are

two types of crests: "sharp and narrow" and "flat and wide". Typically, "sharp-narrow" peaks

have higher peaks and a smaller range, which means that regional differences are decreasing,

while "flat-broad" peaks are the opposite. If the curve shows more than one peak, it reveals that

the overall observation is polarized. This paper employs Gaussian kernel density to study the

changing patterns of carbon emission efficiency in nine primary agricultural subregions in

China. Additionally, it investigates the spatial characteristics of the kernel density map, includ-

ing its position, form, and expandability.
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Indicator selection and data sources

Selection of input-output indicators. Combined with the existing agricultural carbon

emission rate research, this paper selects land, labor, and various agricultural production

resources as input indicators in the agricultural production process. Table 1 displays the

specific selection of indexes for agriculture’s land, labor, and resource inputs. The total

sown area of crops determines land inputs, labor inputs are determined by the number of

employees in the primary industry, and resource inputs mainly consist of fertilizers, pesti-

cides, agricultural films, irrigation, machinery, diesel, and other agricultural production

resources. The agricultural output indexes are measured by the gross agricultural output

value calculated at the constant price in 2000. The non-desired output uses agricultural car-

bon emissions, referring to the calculation method of agricultural carbon emissions by Li

et al. (2011) [32]. Based on the carbon sources of fertilizers, pesticides, diesel fuel, agricul-

tural film, agricultural land, and irrigation, the corresponding carbon emission coefficients

for calculation are 0.8956 kg/kg, 4.9341 kg/kg, 0.5927 kg/kg, 5.18 kg/kg, 312.6 kg/km2, and

19.8575 kg/hm2. Eq (14) illustrates the procedure for determining agricultural carbon emis-

sions.

y ¼
X6

i¼1

yi � pi ð14Þ

The above equation, y represents the total amount of carbon emission from agriculture;

yi represents the input amount of agricultural carbon source factor i; and pi represents the

carbon emission coefficients of i carbon source.

Data sources

To capture the variations in carbon emission rates among the nine main agricultural subre-

gions in China and their evolving patterns, this study selects the period from 2010 to 2021

as the research timeframe. Considering data availability, a balanced panel dataset is con-

structed for the 31 provinces in mainland China during the specified period. The socio-eco-

nomic indicators mentioned above are sourced from the China Statistical Yearbook for the

years 2011–2022, along with the China Rural Statistical Yearbook, China Land and

Resources Statistical Yearbook, and the statistical yearbooks of provinces (autonomous

regions and municipalities under the central government). Table 2 displays the statistical

information for the variables.

Table 1. Input-output indicators for agricultural carbon emission rates.

Criteria layer Indicator layer Sub-indicators Indicator meaning Unit

Input Land Inputs Farmland Inputs Total sown area of crops thousand hectares

Labor inputs Labor inputs Number of workers in the primary sector at the end of the year ten thousand

Machinery Inputs Agricultural Machinery Inputs Total power of agricultural machinery ten thousand kilowatts

Resource inputs Fertilizer Inputs Fertilizer application(purified amount) ten thousand ton

Pesticide Inputs Pesticide use ten thousand ton

Agricultural Film Inputs Agricultural plastic film use ton

Irrigation Inputs Effective irrigated area thousand hectares

Diesel inputs Agricultural diesel fuel input ten thousand ton

Output Expected outputs Agricultural output Total agricultural output billions

Undesired outputs Agricultural carbon emissions Eq (14) kg

https://doi.org/10.1371/journal.pone.0308496.t001
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Measurement and decomposition results of agricultural carbon

emission rate

Trend of agricultural carbon emission rates

The overall trend of change. Using the BPNN-DDF approach, we assess the rate of car-

bon emissions from agriculture in all 31 provinces of mainland China between 2010 and 2021.

To accurately assess the precision of the BPNN-DDF model in measuring carbon emission

efficiency, this study introduces the super-efficient GML-SBM-DEA model with non-expected

output as a comparison method. As shown in Table 3, the results of the comparative analysis

show that the efficiency values estimated by the BPNN-DDF model exhibit higher volatility.

This feature more fully reveals the significant differences in carbon emission efficiency

between regions.

Additionally, we compute and break down the agricultural carbon emission efficiency

(ACE) into two components: technical change (TC) and efficiency change (EC). This analysis

allows us to evaluate the impact of both technical change and efficiency change on the overall

efficiency of agricultural carbon emissions.TC represents the impact of the movement of the

production frontier in each Chinese province, indicating the alteration in agricultural carbon

emission efficiency caused by regional technological advancements. On the other hand, EC

signifies the change in proximity of each Chinese province to the production frontier, reflect-

ing the province’s progress in catching up with agricultural carbon emission efficiency. The

specific results are shown in Fig 1.

Based on the data presented in Fig 1, it is clear that China has witnessed a consistent

upward trend in agricultural carbon emission efficiency, exceeding a value of 1 from 2011 to

2021. A strong correlation is observed between the direction of change in agricultural carbon

emission efficiency and technological progress, with the latter emerging as the primary catalyst

Table 2. Descriptive statistics of variables.

Variable Type Variable Name Mean Standard Min Max

Land Inputs Farmland Inputs 5314.955 3926.614 88.550 15009.810

Labor inputs Labor inputs 853.243 643.199 33.380 2698.450

Machinery Inputs Agricultural Machinery Inputs 183.662 145.683 4.220 716.090

Resource inputs Fertilizer Inputs 5.290 4.168 0.080 16.490

Pesticide Inputs 78874.700 66824.340 852 322965

Agricultural Film Inputs 2122.043 1660.621 109.240 6212.760

Irrigation Inputs 3303.340 2914.942 93.970 13353.020

Diesel inputs 66.388 58.104 1.800 298.470

Desired output Agricultural output 1498.787 1178.500 41.726 5533.379

Undesirable output Agricultural carbon emissions 6106.752 4587.538 255.253 17290.980

https://doi.org/10.1371/journal.pone.0308496.t002

Table 3. Comparison of agricultural carbon efficiency results.

Year BPNN-DDF GML-SBM-DEA Year BPNN-DDF GML-SBM-DEA

2011 1.1979 1.0657 2017 2.8288 1.0762

2012 1.1790 1.0420 2018 1.6041 1.0980

2013 1.7230 1.0686 2019 2.6045 1.0846

2014 0.9638 1.0553 2020 1.5475 1.0709

2015 1.5241 1.0806 2021 3.2527 1.1224

2016 1.7724 1.0989 - - -

https://doi.org/10.1371/journal.pone.0308496.t003
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for enhancing China’s agricultural carbon emission efficiency. The value of technology change

significantly surpasses the value of efficiency change, underscoring the paramount importance of

technological advancements in this context. Notably, between 2011 and 2016, there was a substan-

tial shift in the technology indicator, which can be attributed to the implementation of energy

conservation and emission reduction policies outlined in the 12th Five-Year Plan. The stringent

environmental regulations played a pivotal role in stimulating innovation for energy savings and

emission reductions across all Chinese provinces, thereby contributing to enhanced agricultural

carbon emission efficiency. The examination of TC and EC trends reveals that before 2016, agri-

cultural carbon emission efficiency was predominantly influenced by technical efficiency. How-

ever, from 2016 to 2021, the main driving factor shifted to changes in efficiency, as evidenced by

the consistent dynamic fluctuations in agricultural carbon emission efficiency and efficiency

changes. This shift could be because the technological frontier of agricultural production

expanded significantly before 2016 due to the rapid growth of China’s agricultural economy. This

expansion led to improvements in the efficiency of agricultural carbon emissions through techno-

logical innovations. Nevertheless, the swift advancement of the technological frontier made it

challenging for many provinces to keep pace, resulting in fluctuating efficiency changes during

this period. Consequently, efforts to enhance efficiency became increasingly crucial in maintain-

ing the upward trajectory of agricultural carbon emission efficiency after 2016.

The trend of carbon emission efficiency changes in nine major agricultural

subregions

To clearly show the changes in agricultural carbon emission efficiency in each agricultural sub-

region, this study plotted the subregions in Fig 2(A) and 2(B) according to the degree of fluctu-

ation in agricultural carbon emission efficiency. Fig 2 presents the average carbon emission

efficiency change values for China’s nine major agricultural subregions, as measured by the

BPNN-DDF model from 2010 to 2021. The analysis reveals that the mean carbon emission

efficiency of these nine primary agricultural subregions exceeds 0, indicating a positive trend

in their carbon emission efficiency. Notably, technological advancements emerge as the critical

driver behind improving carbon emission efficiency across the nine primary agricultural sub-

regions. As evidenced by Table 3, the mean value of technological change in these nine major

subregions is higher than 0 and surpasses the mean value of efficiency change. This

Fig 1. The overall trend of change in China’s agricultural carbon emission rate (%).

https://doi.org/10.1371/journal.pone.0308496.g001
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underscores the pivotal role that technological change plays in boosting carbon emission effi-

ciency within China’s nine major agricultural subregions. In summary, the data presented in

Fig 2 and Table 4 collectively demonstrate the significance of technological progress in

enhancing the carbon emission efficiency of China’s nine primary agricultural subregions.

These findings emphasize the need for continued investment in technological innovations and

supportive policies to facilitate further improvements in carbon emission efficiency and pro-

mote sustainable agricultural practices across these subregions.

Meanwhile, this study examines the pattern of carbon emission effectiveness in the nine pri-

mary agricultural subregions during the specified research period. Additionally, Fig 2 illus-

trates the carbon emission efficiency trend of these subregions in China using BPNN-DDF

Fig 2. Trends in carbon emission efficiency in nine major agricultural subregions in China (%).

https://doi.org/10.1371/journal.pone.0308496.g002
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within the same research period. The results reveal that the carbon emission efficiency in most

of China’s agricultural subregions is higher than one and primarily varies between 1 and 2.

The Qinghai Tibet Plateau and the Huang-Huai-Hai Plain do not exhibit a noticeable upward

or downward trend. This stability could be attributed to these regions’ unique environmental

and socio-economic conditions.

Subregions with a stable agricultural environment, such as Southern China and the Huang-

Huai-Hai Plain, have relatively high carbon emission efficiencies. This stability is likely due to

consistent climatic conditions and fewer natural disasters, facilitating more efficient agricultural

practices and lower carbon emissions. Conversely, areas characterized by complex agricultural

development conditions, including the arid and semi-arid regions in the North and the Middle-

lower Yangtze Plain, exhibit comparatively lower efficiency in carbon emissions. This can be

attributed to harsher climatic conditions, water scarcity, and greater vulnerability to extreme

weather events, hindering efficient agricultural practices and increasing carbon emissions.

Furthermore, regions with more advanced development levels, such as Southern China and

the Huang-Huai-Hai Plain, tend to demonstrate relatively elevated agricultural carbon emis-

sion efficiency. This higher efficiency is likely due to better access to advanced agricultural

technologies, improved infrastructure, and more robust economic support systems, which

enable more efficient resource use and lower carbon emissions. In contrast, less developed

regions, such as the Qinghai Tibet Plateau and the Northeast China Plain, exhibit compara-

tively lower carbon emission efficiency. This disparity can be attributed to limited access to

modern agricultural technologies, inadequate infrastructure, and lower economic develop-

ment levels, resulting in less efficient resource use and higher carbon emissions.

Overall, regional economic development and advancements in agricultural science and

technology positively influence the efficiency of agricultural carbon emissions [33]. These fac-

tors enable regions to implement more efficient agricultural practices, thus reducing carbon

emissions. Future policies should enhance technological adoption and infrastructure develop-

ment in less-developed regions to improve carbon emission efficiency.

Decomposition results of agricultural carbon emission efficiency

Decomposition of scale effect, environmental control effect, and comprehensive input

effect. An analytical approach focusing on input and output factors is employed to effectively

examine the efficiency of agricultural carbon emissions in China, drawing upon the founda-

tional calculations established by a preceding model. This methodology facilitates a nuanced

understanding of how each input-output factor distinctly contributes to technological

advancements and productivity enhancements. The analysis, spanning a decade from 2011 to

2021, is succinctly encapsulated in Fig 3. This figure illustrates the influence of key factors on

Table 4. Carbon emission efficiency of the nine major agricultural subregions in China (%).

Division TC EC ACE

Northeast China Plain 0.31 1.27 1.59

Yunnan-Guizhou Plateau 0. 40 1.70 2.10

Northern Arid and Semiarid Region 0. 83 0. 94 1.76

Southern China 0.00 2.45 2.45

Sichuan Basin and Surrounding Region 0. 34 1.41 1.75

Middle-lower Yangtze Plain -0.06 1.89 1.83

Qinghai Tibet Plateau -2.77 3.30 0. 53

Loess Plateau 0. 68 1.65 2.32

Huang-Huai-Hai Plain 0. 95 1.76 2.72

https://doi.org/10.1371/journal.pone.0308496.t004

PLOS ONE Re-measurement of agricultural carbon emission rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0308496 August 9, 2024 12 / 25

https://doi.org/10.1371/journal.pone.0308496.t004
https://doi.org/10.1371/journal.pone.0308496


critical indicators, including the scale effect, the environmental control effect, and the compre-

hensive input effect. These indicators not only gauge the efficiency of agricultural carbon emis-

sions but also provide insights into the progress of technical efficiency within the sector.

Before 2015, the growth of China’s agricultural economy did not significantly influence the

enhancement of agricultural carbon emission efficiency. This observation becomes apparent

when examining Fig 3(A)–3(C), where it is apparent that despite environmental constraints,

increased agricultural production did not correspondingly improve the efficiency of agricul-

tural carbon emissions. In contrast, technological advancements have been instrumental in

enhancing this efficiency. Furthermore, the impact of environmental control has demon-

strated a positive trajectory, particularly between 2015 and 2021. Technological advancements

have consistently contributed to agricultural carbon emission efficiency growth during this

period, counterbalancing any negative impacts from efficiency changes.

Like the environmental control effects, the aggregate input effects generally contribute posi-

tively. With the exceptions of 2013 and 2014, these inputs have maintained an economizing

bias. However, when considering the technical and efficiency aspects, a trade-off emerges. On

one hand, increased efficiency in factor utilization can lead to reduced consumption of various

inputs. However, maintaining pace with these efficiency improvements becomes challenging

as technology advances. This is evident in Fig 3(B), where efficiency changes shown in Fig 3

(C) are minimally impactful in the face of negative technological changes before 2015. Con-

versely, changes in certain input factors can stimulate technological progress, but overly rapid

advancements in the short term may result in efficiency gains that are difficult to sustain. This

analysis suggests that technological advancements can facilitate some degree of input factor

savings. To further enhance agricultural carbon emission efficiency, agricultural producers

across all regions must embrace and apply advanced agricultural production technologies

while continuously improving production factors’ efficiency.

Decomposition of the effects of the nine agricultural sub-regions. Fig 4 provides a

detailed analysis of input and output factors, demonstrating the effects of scale, environmental

control, and comprehensive input on carbon emission efficiency across China’s nine major

agricultural regions. The analysis reveals that the scale effect on carbon emission efficiency in

these regions is relatively minor, with all subregions exhibiting some degree of factor saving

and environmental control. Notably, these effects have increased, particularly following Chi-

na’s national policy for low-carbon agricultural development in 2015.

The variation in carbon emission efficiency among different agricultural subregions is

attributable to their varied levels of agricultural technology and the implementation of envi-

ronmental controls. Developed regions like Southern China and the Middle-lower Yangtze

Plain rely predominantly on technological advancements to boost carbon emission efficiency.

These regions benefit from access to cutting-edge agricultural technologies, improved infra-

structure, and better resource management practices, collectively enhancing carbon efficiency.

In contrast, less developed areas, such as the Qinghai Tibet Plateau, depend more on effi-

ciency improvements than technological advancements to enhance carbon efficiency. These

regions often face challenges such as harsh environmental conditions, limited access to mod-

ern technology, and inadequate infrastructure, making it more difficult to achieve significant

technological advancements. Therefore, they focus on optimizing existing practices and

improving resource use efficiency to reduce carbon emissions.

A significant finding is that during 2011–2015, the influence of efficiency improvements

was more pronounced than that of technological advancements. This period saw regions

implementing better resource management practices and optimizing agricultural processes to

improve carbon emission efficiency. However, the trend reversed post-2015, with the impact

of technological changes gradually surpassing efficiency improvements. This shift underscores
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Fig 3. Decomposition of input-output effects of ACE (a), TC (b), and EC (c) (%) (%).

https://doi.org/10.1371/journal.pone.0308496.g003
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the pivotal role of technological advancements in driving the growth of China’s agricultural

economy and enhancing the efficiency of carbon emissions in the sector. Introducing new

technologies, such as precision agriculture, improved crop varieties, and advanced irrigation

systems, has significantly contributed to this improvement.

Nonetheless, it is critical to recognize the substantial role of efficiency changes in improving

carbon emission efficiency in specific agricultural subregions. In regions where technological

adoption is slower, continuous improvements in agricultural practices, resource management,

and environmental control remain essential for enhancing carbon efficiency. For example,

implementing more efficient fertilization techniques, better pest control methods, and

improved soil management practices can significantly reduce carbon emissions.

The study highlights the multifaceted approach needed to improve carbon emission effi-

ciency in China’s agricultural sector. While technological advancements are crucial, ongoing

efficiency improvements and effective environmental control measures are equally significant.

Policymakers should promote technological innovation and adopt best practices across all

regions to achieve sustainable agricultural development and reduced carbon emissions.

Subregional differences and dynamic evolution of agricultural

carbon emission rates in China

Subregional differences in China’s agricultural carbon emission rate

Overall differences in subregions. Table 4 details the Dagum Gini coefficients for China’s

nine main agricultural subregions between 2010 and 2021. Concurrently, Fig 5 graphically

Fig 4. Input-output decomposition effects of carbon emission efficiency in nine agricultural subregions (%).

https://doi.org/10.1371/journal.pone.0308496.g004
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represents the evolving contribution rates of various factors that account for the disparities in

carbon emission rates across these subregions. Table 4 indicates that the total Gini index for

the country’s agricultural carbon emissions escalated from 0.174 to 0.425 over this period. This

substantial increase indicates a growing divergence in carbon emission rates among the agri-

cultural subregions.

A combined analysis of Table 5 and Fig 5 reveals that their differences are the primary driv-

ers behind the variation in carbon emission rates across subregions. Notably, this factor fol-

lows a pattern of initial decline followed by an increase. Furthermore, the contribution rate of

hyperintensity, which hovers around 25%, suggests that interactions between different subre-

gions also play a significant role in shaping the disparities in agricultural carbon emission

rates. In contrast, the impact of intra-zonal differences, although the least significant, has been

on a downward trend. This comprehensive analysis underscores the complexity and dynamic

nature of agricultural carbon emission rates across China’s diverse agricultural subregions.

Intra-subregional differences. Fig 6 visually represents the evolving internal differences

in carbon emission rates within China’s nine major agricultural subregions. Upon examining

Fig 6, it becomes evident that specific subregions, namely the Middle-lower Yangtze Plain, the

Northern Arid and Semiarid Region, the Loess Plateau, and the Huang-Huai-Hai Plain,

exhibit significant internal variances. In contrast, subregions like the Yunnan-Guizhou Plateau

and the Qinghai Tibet Plateau show relatively lower levels of internal variance. The slightest

internal variances are observed in Southern China, the Sichuan Basin, and the surrounding

region. The overall trend indicates a gradual increase in the internal differences among these

subregions, with notable exceptions being Southern China, the Sichuan Basin, and the sur-

rounding region, where the variance remains less pronounced. The underlying causes of these

subregional variations in agricultural carbon emission rates are multifaceted. Economic devel-

opment, geographic and environmental characteristics, and climatic conditions are key con-

tributing factors.

Firstly, regions with higher levels of economic development, such as the Middle-lower

Yangtze Plain and the Huang-Huai-Hai Plain, tend to have more advanced agricultural

Fig 5. Trends in carbon emission efficiency differences among China’s nine key agricultural subregions.

https://doi.org/10.1371/journal.pone.0308496.g005
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practices and technologies. This leads to more significant variability in carbon emission rates

as some areas adopt new technologies faster than others. In contrast, less economically devel-

oped regions like the Qinghai Tibet Plateau and the Yunnan-Guizhou Plateau exhibit lower

internal variance due to more uniform, traditional farming practices.

Moreover, geographic diversity significantly influences carbon emission rates. The Middle-

lower Yangtze Plain and the Northern Arid and Semiarid Region have diverse topographies

and soil types, leading to varied agricultural practices and carbon emission levels. Conversely,

regions like Southern China and the Sichuan Basin have more homogeneous environmental

conditions, resulting in more consistent carbon emission rates.

Additionally, climate plays a crucial role in agricultural productivity and carbon emissions.

The Northern Arid and Semiarid Region and the Loess Plateau experience harsher climatic

Table 5. Gini coefficient and contribution to agricultural carbon emission rate in China, 2010–2021.

Year Overall G Gw Gnb Gt Gw Contribution Rate Gnb Contribution Rate Gt Contribution Rate

2010 0.174 0.018 0.104 0.052 10.49% 59.69% 29.82%

2011 0.192 0.020 0.120 0.053 10.18% 62.44% 27.38%

2012 0.194 0.020 0.120 0.054 10.19% 61.79% 28.02%

2013 0.194 0.020 0.120 0.054 10.35% 61.99% 27.66%

2014 0.199 0.020 0.128 0.052 9.99% 64.02% 25.99%

2015 0.213 0.021 0.136 0.056 9.72% 64.08% 26.20%

2016 0.241 0.021 0.163 0.057 8.74% 67.61% 23.66%

2017 0.289 0.026 0.194 0.069 9.04% 66.99% 23.97%

2018 0.297 0.026 0.193 0.079 8.61% 64.81% 26.57%

2019 0.325 0.027 0.209 0.088 8.39% 64.45% 27.16%

2020 0.346 0.030 0.214 0.101 8.80% 61.99% 29.22%

2021 0.425 0.037 0.277 0.111 8.75% 65.21% 26.04%

https://doi.org/10.1371/journal.pone.0308496.t005

Fig 6. Intra-subregional carbon emission rate evolution in nine major agricultural subregions.

https://doi.org/10.1371/journal.pone.0308496.g006
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conditions, leading to significant agricultural practices and carbon emissions variability. In

contrast, regions with more stable climates, such as Southern China, exhibit less internal vari-

ance in carbon emissions due to consistent agricultural practices.

In summary, the observed internal differences in carbon emission rates within China’s agri-

cultural subregions are influenced by economic development, geographic and environmental

characteristics, and climatic conditions. Understanding these underlying causes is crucial for

developing targeted strategies to reduce carbon emissions and promote sustainable agricul-

tural practices across all regions.

Inter-subregional differences. This paper categorizes the changes in inter-subregional

agricultural variations into three patterns according to their dynamic trends: Straight Up, Zig-

zagging Up, and Slow Up. These trends are illustrated in Fig 7. In this case, because there are

more slowly rising intervals, the subinterval differences are shown in two figures to show them

clearly. Notably, Southern China encompasses subregions demonstrating a Straight-Up in

inter-subregional differences, as detailed in Fig 7. This subregion’s superior agricultural pro-

duction conditions, favorable climate, abundant natural resources, and advanced economic

development contribute to its pronounced inter-subregional differences compared to other

subregions. Consequently, it can be inferred that geographic location, climatic conditions,

resource availability, and economic development level significantly influence subregional agri-

cultural carbon emission efficiency.

Focusing on the subregions exhibiting a Zigzagging Up pattern, most are found within the

Huang-Huai-Hai Plain. This trend is attributed to three main factors. First, the Huang-Huai-

Hai Plain is located in China’s eastern monsoon climate zone, where climate change affects

agricultural carbon emissions. Second, this area’s dense population and complex agricultural

industry structure, characterized by extensive chemical fertilizers, pesticides, and other organic

substances, can alter the subregion’s agricultural carbon emissions. Lastly, policy factors play a

crucial role. In recent years, the government’s intensified efforts to protect the environment,

promote renewable energy, advance technology, and restructure the agricultural sector have

Fig 7. Evolution of carbon emission disparities in nine key agricultural subregions.

https://doi.org/10.1371/journal.pone.0308496.g007
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significantly influenced the Huang-Huai-Hai Plain, a subregion with a strong agricultural

focus. Policies fostering low-carbon development in agriculture particularly impact this area.

Meanwhile, most other subregions exhibit a Slow-Up trend in inter-subregional differ-

ences. This differential change is likely closely associated with geographical development level,

differences in geographic environments, agricultural production technology, and policy guid-

ance. These elements collectively shape the patterns of change in agricultural carbon emission

efficiency across the various subregions.

Dynamic evolution of carbon emission rates in nine major agricultural subregions in

China. Based on measuring the subregional differences and sources of agricultural carbon

emission rates in the nine subregions, this paper further adopts the KDE to examine the

dynamic evolution characteristics of agricultural carbon emission rates in the country and the

nine subregions.

Dynamic evolution of national agricultural carbon emission rate. Fig 8 illustrates the

evolution of the kernel density curve for China’s national agricultural carbon emission rate. A

notable observation from this figure is the shift of the central density function towards the left,

indicating a gradual reduction in the agricultural carbon emission rate and a concomitant

improvement in national carbon emission efficiency.

Analyzing the changes in the curve’s peaks, a distinct trend is discernible: the disparity in

the national agricultural carbon emission rate initially increased from 2010 to 2013, then

decreased from 2014 to 2018, and subsequently began to rise again. This pattern resonates

with the findings from the earlier analysis on the national Gini coefficient, confirming a fluctu-

ating trajectory of the disparities in agricultural carbon emission rates, characterized by an ini-

tial increase, followed by a decrease, and then an increase once more.

The national agricultural carbon emission rate also presents a ’double-peak’ distribution

curve, indicative of a ’polarization’ phenomenon in China’s agricultural carbon emissions. As

Fig 8. Dynamic evolution of national agricultural carbon emission rate.

https://doi.org/10.1371/journal.pone.0308496.g008
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identified in the prior factor decomposition analysis, various factors, including environmental

regulations and mechanical and labor inputs, influence the efficiency of these emissions.

During the 12th Five-Year Plan, the Chinese government fervently promoted eco-friendly

development and implemented numerous energy conservation and emission reduction initia-

tives. These measures aim to advance technological capabilities and agricultural production

techniques, leading to effective management and reduction of short-term agricultural carbon

emissions. However, the rapid pace of urbanization and the increasing migration of rural

workers have expanded agricultural output. This expansion, in turn, has caused a rise in car-

bon emissions in certain areas and variations in the rate of agricultural carbon release,

highlighting the dynamic and complex nature of agricultural carbon emissions in China.

Dynamic evolution of carbon emission rates in nine agricultural subregions. Fig 9

showcases the distribution of carbon emission rates across nine primary agricultural subregions

in China using kernel density curves. These patterns reflect the variations in carbon emission

intensity across these subregions over different periods. An initial examination of the positional

shifts in each area reveals that the kernel density functions for all nine agricultural subregions

consistently move toward the left. This uniform shift suggests a declining agricultural carbon

emission rate trend within each subregion, signifying improved carbon emission efficiency.

A closer look at each subregion’s peak alterations and shape characteristics reveals distinct

patterns. The Northeast China Plain, Southern China, the Sichuan Basin, and nearby areas dis-

play a relatively uniform peak distribution, with the peak ascending and the right tail not

extending significantly. This pattern indicates that spatial disparities within these subregions

gradually decrease, leading to a more uniform pace of agricultural carbon emissions.

In contrast, the Northern arid and semiarid area, the Middle-lower Yangtze Plain, and the

Loess Plateau show a more complex ’dual peaks’ distribution. The increasing distance between

Fig 9. Dynamic evolution of carbon emission rates in nine agricultural subregions. Note: 1—Northeast China Plain; 2—Yunnan-Guizhou Plateau; 3—

Northern Arid and Semi-arid Region; 4—Southern China; 5—Sichuan Basin and Surrounding Region; 6—Middle-lower Yangtze Plain; 7—Qinghai Tibet

Plateau; 8—Loess Plateau; 9—Huang-Huai-Hai Plain.

https://doi.org/10.1371/journal.pone.0308496.g009
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the two peaks and the elongation of the right tail suggest growing spatial disparities in carbon

emission rates within these subregions each year. The Yunnan-Guizhou Plateau exhibits ’dou-

ble peak’ characteristics. However, the distance between the peaks remains relatively stable,

indicating more carbon emission rate stability than the previously mentioned three

subregions.

Meanwhile, the Qinghai Tibet Plateau and the Huang-Huai-Hai Plain show more pro-

nounced variations in the peaks and intervals of their carbon emission rates. These fluctua-

tions suggest changing disparities among these subregions, with an upward trend. These

observations are consistent with the earlier Gini coefficient analysis, further emphasizing vari-

ations in carbon emission efficiency across China’s nine primary agricultural subregions.

Conclusion and policy implications

Utilizing the forefront of overall technology, this study integrates the BP neural network with a

non-angular and non-radial directional distance function to develop the BPNN-DDF model.

This innovative model is employed to comprehensively measure, decompose, and analyze the

carbon emission rates in China’s nine major agricultural subregions from 2010 to 2021. The

research delves into the subregional differences in agricultural carbon emission rates and their

origins, employing the Dagum Gini coefficient. Additionally, the study leverages kernel den-

sity estimation to investigate the dynamic evolution characteristics of these subregional differ-

ences. From this thorough analysis, several key conclusions emerge:

1. (1) National Agricultural Carbon Emission Rate Trend. The findings align with previous

studies [15, 16] that indicate an overall upward trend in China’s national agricultural car-

bon emission rate, predominantly driven by technological progress rather than improve-

ments in technological efficiency.

2. (2) Inter-Subregional Efficiency Differences. The pronounced disparity in carbon emission

efficiency among the nine subregions is consistent with the findings of Zhang et al. (2022)

[22], who observed that subregions with advanced economies, higher levels of agricultural

technology, and stable climatic conditions demonstrate greater efficiency in agricultural

carbon emissions compared to less developed subregions like the Qinghai-Tibet Plateau.

This highlights the influence of regional economic development, agricultural sophistication,

and climatic conditions on carbon emission efficiency.

3. (3) Decomposition of Influencing Factors. The study’s findings, indicating a more substan-

tial contribution of the environmental control effect and the comprehensive input effect to

agricultural carbon emission efficiency than the scale effect, align with the observations of

Yang et al. (2022) [34].

4. (4) Spatial Heterogeneity Analysis Using Dagum Gini Coefficient. The analysis reveals that

spatial differences in carbon emission efficiency across the nine subregions are expanding.

The primary drivers of these expanding disparities are inter-subregional differences, likely

related to factors such as regional economic development, geographic location, climatic

environment, and agricultural policies, consistent with the findings of Chen et al.(2019)

[35] and Shan et al.(2022) [36].

5. (5) Kernel Density Estimation Findings. The observed national average decline in carbon

emission rate, coupled with increasing differences in emissions between subregions and the

"bimodal" distribution polarization in some regions. This means that, despite the overall

development of China’s agriculture in the direction of decarbonization, there is still an

urgent need to take targeted measures at the regional level to narrow the gap in the rate of
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agricultural carbon emissions between different regions and to promote balanced and sus-

tainable development on a national scale.

Drawing from the insights gained, this paper proposes the following policy recommenda-

tions to enhance agricultural carbon emission efficiency:

1. (1) Strengthen technological innovation and promotion: actively promote the construction

of an agricultural science and technology innovation system, increase the research and

development and transformation of new, low-carbon, and high-efficiency agricultural tech-

nologies, especially in economically underdeveloped regions with relatively weak agricul-

tural science and technology base, formulate targeted support policies, and accelerate the

popularization of the application of advanced technologies through special funds, techno-

logical training, and demonstration projects, to ensure the effectiveness and sustainability

of the transfer of technologies: effectiveness and sustainability.

2. (2) Refinement of regional differentiation strategies: Fully consider the ecological and envi-

ronmental characteristics, differences in resource endowments, and the structural charac-

teristics of agricultural production in the nine major agricultural subregions, and formulate

and implement refined green development policies according to local conditions. Provide

targeted support to lagging areas, including financial subsidies, technical support, market

guidance, and other diversified means, to encourage them to change the traditional agricul-

tural model and actively transform to modern agriculture that is environmentally friendly,

resource-saving, and carbon emission inefficient.

3. (3) Optimize the allocation of agricultural machinery and equipment and labor resources:

Vigorously promote the process of agricultural mechanization, especially in regions with

conditions for large-scale mechanization, accelerate the pace of elimination and renewal of

old agricultural machinery, and introduce energy-saving and highly efficient modernized

agricultural machinery and equipment, to effectively reduce the problems of high energy

consumption and carbon emissions caused by the traditional farming methods. At the

same time, in labor-intensive agricultural areas, the reform of farmers’ education and skills

training will be combined to improve farmers’ knowledge and practical ability in low-car-

bon agricultural production and energy-saving and emission-reduction technologies to cul-

tivate a new generation of green farmers.

4. (4) Policy coordination and linkage and construction of long-term mechanism: Incorporate

the efficiency of agricultural carbon emissions into the core indicator system of local eco-

nomic and social development planning to ensure the synergy of the multiple objectives of

economic growth, environmental protection, and sustainable development of agriculture,

and to prevent the phenomenon of simply pursuing economic growth at the expense of

environmental benefits. Establishing a long-term stable policy framework for green agricul-

tural development, linking up and down the climate governance goals of governments at all

levels, and gradually reducing the spatial variability of agricultural carbon emission effi-

ciency among different regions through regulatory and institutional innovations, incentive

mechanism design, and other measures, to realize the green and low-carbon transformation

of agricultural production on a national scale.
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